Mister Exam

Other calculators


8/(16n^2+8n-15)
  • How to use it?

  • Sum of series:
  • 2i 2i
  • 1/(n+1)! 1/(n+1)!
  • lnn/n lnn/n
  • factorial(n+2)/n^n factorial(n+2)/n^n
  • Identical expressions

  • eight /(16n^ two +8n- fifteen)
  • 8 divide by (16n squared plus 8n minus 15)
  • eight divide by (16n to the power of two plus 8n minus fifteen)
  • 8/(16n2+8n-15)
  • 8/16n2+8n-15
  • 8/(16n²+8n-15)
  • 8/(16n to the power of 2+8n-15)
  • 8/16n^2+8n-15
  • 8 divide by (16n^2+8n-15)
  • Similar expressions

  • 8/(16n^2-8n-15)
  • 8/(16n^2+8n+15)

Sum of series 8/(16n^2+8n-15)



=

The solution

You have entered [src]
  oo                  
____                  
\   `                 
 \           8        
  \   ----------------
  /       2           
 /    16*n  + 8*n - 15
/___,                 
n = 1                 
$$\sum_{n=1}^{\infty} \frac{8}{\left(16 n^{2} + 8 n\right) - 15}$$
Sum(8/(16*n^2 + 8*n - 15), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{8}{\left(16 n^{2} + 8 n\right) - 15}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{8}{16 n^{2} + 8 n - 15}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\left(8 n + 16 \left(n + 1\right)^{2} - 7\right) \left|{\frac{1}{16 n^{2} + 8 n - 15}}\right|\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
8*Gamma(13/4)
-------------
15*Gamma(9/4)
$$\frac{8 \Gamma\left(\frac{13}{4}\right)}{15 \Gamma\left(\frac{9}{4}\right)}$$
8*gamma(13/4)/(15*gamma(9/4))
Numerical answer [src]
1.20000000000000000000000000000
1.20000000000000000000000000000
The graph
Sum of series 8/(16n^2+8n-15)

    Examples of finding the sum of a series