Mister Exam

Factor x^2-x-30 squared

An expression to simplify:

The solution

You have entered [src]
 2         
x  - x - 30
$$\left(x^{2} - x\right) - 30$$
x^2 - x - 30
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(x^{2} - x\right) - 30$$
To do this, let's use the formula
$$a x^{2} + b x + c = a \left(m + x\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = -1$$
$$c = -30$$
Then
$$m = - \frac{1}{2}$$
$$n = - \frac{121}{4}$$
So,
$$\left(x - \frac{1}{2}\right)^{2} - \frac{121}{4}$$
Factorization [src]
(x + 5)*(x - 6)
$$\left(x - 6\right) \left(x + 5\right)$$
(x + 5)*(x - 6)
General simplification [src]
       2    
-30 + x  - x
$$x^{2} - x - 30$$
-30 + x^2 - x
Common denominator [src]
       2    
-30 + x  - x
$$x^{2} - x - 30$$
-30 + x^2 - x
Rational denominator [src]
       2    
-30 + x  - x
$$x^{2} - x - 30$$
-30 + x^2 - x
Combinatorics [src]
(-6 + x)*(5 + x)
$$\left(x - 6\right) \left(x + 5\right)$$
(-6 + x)*(5 + x)
Powers [src]
       2    
-30 + x  - x
$$x^{2} - x - 30$$
-30 + x^2 - x
Numerical answer [src]
-30.0 + x^2 - x
-30.0 + x^2 - x
Combining rational expressions [src]
-30 + x*(-1 + x)
$$x \left(x - 1\right) - 30$$
-30 + x*(-1 + x)
Trigonometric part [src]
       2    
-30 + x  - x
$$x^{2} - x - 30$$
-30 + x^2 - x
Assemble expression [src]
       2    
-30 + x  - x
$$x^{2} - x - 30$$
-30 + x^2 - x