Mister Exam

Other calculators

How do you ((3*x+2)^4+12*(3*x+2)^3*(x-1))/(3*x-2)^4-12*(3*x+2)^4*(x-1)/(3*x-2)^5 in partial fractions?

An expression to simplify:

The solution

You have entered [src]
         4               3                       4        
(3*x + 2)  + 12*(3*x + 2) *(x - 1)   12*(3*x + 2) *(x - 1)
---------------------------------- - ---------------------
                     4                              5     
            (3*x - 2)                      (3*x - 2)      
$$- \frac{\left(x - 1\right) 12 \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{5}} + \frac{\left(x - 1\right) 12 \left(3 x + 2\right)^{3} + \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{4}}$$
((3*x + 2)^4 + (12*(3*x + 2)^3)*(x - 1))/(3*x - 2)^4 - (12*(3*x + 2)^4)*(x - 1)/(3*x - 2)^5
Fraction decomposition [src]
1 - 320/(-2 + 3*x)^3 - 80/(-2 + 3*x)^2 + 1024/(-2 + 3*x)^5
$$1 - \frac{80}{\left(3 x - 2\right)^{2}} - \frac{320}{\left(3 x - 2\right)^{3}} + \frac{1024}{\left(3 x - 2\right)^{5}}$$
        320            80           1024   
1 - ----------- - ----------- + -----------
              3             2             5
    (-2 + 3*x)    (-2 + 3*x)    (-2 + 3*x) 
General simplification [src]
         3 /            2                       \
(2 + 3*x) *\5*(-2 + 3*x)  + 12*(1 - x)*(2 + 3*x)/
-------------------------------------------------
                             5                   
                   (-2 + 3*x)                    
$$\frac{\left(3 x + 2\right)^{3} \left(12 \left(1 - x\right) \left(3 x + 2\right) + 5 \left(3 x - 2\right)^{2}\right)}{\left(3 x - 2\right)^{5}}$$
(2 + 3*x)^3*(5*(-2 + 3*x)^2 + 12*(1 - x)*(2 + 3*x))/(-2 + 3*x)^5
Numerical answer [src]
0.0123456790123457*(81.0*(0.666666666666667 + x)^4 + 324.0*(0.666666666666667 + x)^3*(-1.0 + x))/(-0.666666666666667 + x)^4 - 4.0*(0.666666666666667 + x)^4*(-1.0 + x)/(-0.666666666666667 + x)^5
0.0123456790123457*(81.0*(0.666666666666667 + x)^4 + 324.0*(0.666666666666667 + x)^3*(-1.0 + x))/(-0.666666666666667 + x)^4 - 4.0*(0.666666666666667 + x)^4*(-1.0 + x)/(-0.666666666666667 + x)^5
Assemble expression [src]
         4               3                        4         
(2 + 3*x)  + 12*(2 + 3*x) *(-1 + x)   12*(2 + 3*x) *(-1 + x)
----------------------------------- - ----------------------
                      4                              5      
            (-2 + 3*x)                     (-2 + 3*x)       
$$- \frac{12 \left(x - 1\right) \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{5}} + \frac{12 \left(x - 1\right) \left(3 x + 2\right)^{3} + \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{4}}$$
((2 + 3*x)^4 + 12*(2 + 3*x)^3*(-1 + x))/(-2 + 3*x)^4 - 12*(2 + 3*x)^4*(-1 + x)/(-2 + 3*x)^5
Trigonometric part [src]
         4               3                        4         
(2 + 3*x)  + 12*(2 + 3*x) *(-1 + x)   12*(2 + 3*x) *(-1 + x)
----------------------------------- - ----------------------
                      4                              5      
            (-2 + 3*x)                     (-2 + 3*x)       
$$- \frac{12 \left(x - 1\right) \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{5}} + \frac{12 \left(x - 1\right) \left(3 x + 2\right)^{3} + \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{4}}$$
((2 + 3*x)^4 + 12*(2 + 3*x)^3*(-1 + x))/(-2 + 3*x)^4 - 12*(2 + 3*x)^4*(-1 + x)/(-2 + 3*x)^5
Combining rational expressions [src]
         3 /            2                        \
(2 + 3*x) *\5*(-2 + 3*x)  - 12*(-1 + x)*(2 + 3*x)/
--------------------------------------------------
                             5                    
                   (-2 + 3*x)                     
$$\frac{\left(3 x + 2\right)^{3} \left(- 12 \left(x - 1\right) \left(3 x + 2\right) + 5 \left(3 x - 2\right)^{2}\right)}{\left(3 x - 2\right)^{5}}$$
(2 + 3*x)^3*(5*(-2 + 3*x)^2 - 12*(-1 + x)*(2 + 3*x))/(-2 + 3*x)^5
Common denominator [src]
                         2                 3        
            -384 - 1440*x  - 960*x + 2160*x         
1 - ------------------------------------------------
               4        2                5         3
    -32 - 810*x  - 720*x  + 240*x + 243*x  + 1080*x 
$$- \frac{2160 x^{3} - 1440 x^{2} - 960 x - 384}{243 x^{5} - 810 x^{4} + 1080 x^{3} - 720 x^{2} + 240 x - 32} + 1$$
1 - (-384 - 1440*x^2 - 960*x + 2160*x^3)/(-32 - 810*x^4 - 720*x^2 + 240*x + 243*x^5 + 1080*x^3)
Powers [src]
         4            3                         4            
(2 + 3*x)  + (2 + 3*x) *(-12 + 12*x)   (2 + 3*x) *(12 - 12*x)
------------------------------------ + ----------------------
                      4                               5      
            (-2 + 3*x)                      (-2 + 3*x)       
$$\frac{\left(12 - 12 x\right) \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{5}} + \frac{\left(3 x + 2\right)^{4} + \left(3 x + 2\right)^{3} \left(12 x - 12\right)}{\left(3 x - 2\right)^{4}}$$
         4               3                        4         
(2 + 3*x)  + 12*(2 + 3*x) *(-1 + x)   12*(2 + 3*x) *(-1 + x)
----------------------------------- - ----------------------
                      4                              5      
            (-2 + 3*x)                     (-2 + 3*x)       
$$- \frac{12 \left(x - 1\right) \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{5}} + \frac{12 \left(x - 1\right) \left(3 x + 2\right)^{3} + \left(3 x + 2\right)^{4}}{\left(3 x - 2\right)^{4}}$$
((2 + 3*x)^4 + 12*(2 + 3*x)^3*(-1 + x))/(-2 + 3*x)^4 - 12*(2 + 3*x)^4*(-1 + x)/(-2 + 3*x)^5
Rational denominator [src]
          5 /         4               3         \                4          4         
(-2 + 3*x) *\(2 + 3*x)  + 12*(2 + 3*x) *(-1 + x)/ - 12*(-2 + 3*x) *(2 + 3*x) *(-1 + x)
--------------------------------------------------------------------------------------
                                               9                                      
                                     (-2 + 3*x)                                       
$$\frac{- 12 \left(x - 1\right) \left(3 x - 2\right)^{4} \left(3 x + 2\right)^{4} + \left(3 x - 2\right)^{5} \left(12 \left(x - 1\right) \left(3 x + 2\right)^{3} + \left(3 x + 2\right)^{4}\right)}{\left(3 x - 2\right)^{9}}$$
((-2 + 3*x)^5*((2 + 3*x)^4 + 12*(2 + 3*x)^3*(-1 + x)) - 12*(-2 + 3*x)^4*(2 + 3*x)^4*(-1 + x))/(-2 + 3*x)^9
Combinatorics [src]
         3 /               2\
(2 + 3*x) *\44 - 48*x + 9*x /
-----------------------------
                   5         
         (-2 + 3*x)          
$$\frac{\left(3 x + 2\right)^{3} \left(9 x^{2} - 48 x + 44\right)}{\left(3 x - 2\right)^{5}}$$
(2 + 3*x)^3*(44 - 48*x + 9*x^2)/(-2 + 3*x)^5