Fraction decomposition
[src]
-16 + 1/(4 + z) - 1/z - 4/(4 + z)^2
$$-16 + \frac{1}{z + 4} - \frac{4}{\left(z + 4\right)^{2}} - \frac{1}{z}$$
1 1 4
-16 + ----- - - - --------
4 + z z 2
(4 + z)
General simplification
[src]
1 z
-16 - - + --------
z 2
(4 + z)
$$\frac{z}{\left(z + 4\right)^{2}} - 16 - \frac{1}{z}$$
1 z
-16 - - + --------
z 2
(4 + z)
$$\frac{z}{\left(z + 4\right)^{2}} - 16 - \frac{1}{z}$$
16 + 8*z
-16 - ----------------
3 2
z + 8*z + 16*z
$$- \frac{8 z + 16}{z^{3} + 8 z^{2} + 16 z} - 16$$
-16 - (16 + 8*z)/(z^3 + 8*z^2 + 16*z)
Rational denominator
[src]
3 2 2 2
z - z*(4 + z) - 16*z *(4 + z)
--------------------------------
2 2
z *(4 + z)
$$\frac{z^{3} - 16 z^{2} \left(z + 4\right)^{2} - z \left(z + 4\right)^{2}}{z^{2} \left(z + 4\right)^{2}}$$
(z^3 - z*(4 + z)^2 - 16*z^2*(4 + z)^2)/(z^2*(4 + z)^2)
Assemble expression
[src]
1 z
-16 - - + --------
z 2
(4 + z)
$$\frac{z}{\left(z + 4\right)^{2}} - 16 - \frac{1}{z}$$
Combining rational expressions
[src]
2 2 2
z - (4 + z) - 16*z*(4 + z)
-----------------------------
2
z*(4 + z)
$$\frac{z^{2} - 16 z \left(z + 4\right)^{2} - \left(z + 4\right)^{2}}{z \left(z + 4\right)^{2}}$$
(z^2 - (4 + z)^2 - 16*z*(4 + z)^2)/(z*(4 + z)^2)
/ 3 2 \
-8*\2 + 2*z + 16*z + 33*z/
----------------------------
2
z*(4 + z)
$$- \frac{8 \left(2 z^{3} + 16 z^{2} + 33 z + 2\right)}{z \left(z + 4\right)^{2}}$$
-8*(2 + 2*z^3 + 16*z^2 + 33*z)/(z*(4 + z)^2)
1 z
-16 - - + --------
z 2
(4 + z)
$$\frac{z}{\left(z + 4\right)^{2}} - 16 - \frac{1}{z}$$
-16.0 - 1/z + 0.0625*z/(1 + 0.25*z)^2
-16.0 - 1/z + 0.0625*z/(1 + 0.25*z)^2