Mister Exam

Other calculators

How do you (y/(x-y)+x/(x+y))/(1/x^2+1/y^2)-y^4/(x^2-y^2) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  y       x            
----- + -----       4  
x - y   x + y      y   
------------- - -------
   1    1        2    2
   -- + --      x  - y 
    2    2             
   x    y              
$$- \frac{y^{4}}{x^{2} - y^{2}} + \frac{\frac{x}{x + y} + \frac{y}{x - y}}{\frac{1}{y^{2}} + \frac{1}{x^{2}}}$$
(y/(x - y) + x/(x + y))/(1/(x^2) + 1/(y^2)) - y^4/(x^2 - y^2)
Fraction decomposition [src]
y^2
$$y^{2}$$
 2
y 
General simplification [src]
 2
y 
$$y^{2}$$
y^2
Combinatorics [src]
 2
y 
$$y^{2}$$
y^2
Rational denominator [src]
 2  2 / 2    2\                            4                 / 2    2\
x *y *\x  - y /*(x*(x - y) + y*(x + y)) - y *(x + y)*(x - y)*\x  + y /
----------------------------------------------------------------------
                                 / 2    2\ / 2    2\                  
                 (x + y)*(x - y)*\x  + y /*\x  - y /                  
$$\frac{x^{2} y^{2} \left(x^{2} - y^{2}\right) \left(x \left(x - y\right) + y \left(x + y\right)\right) - y^{4} \left(x - y\right) \left(x + y\right) \left(x^{2} + y^{2}\right)}{\left(x - y\right) \left(x + y\right) \left(x^{2} - y^{2}\right) \left(x^{2} + y^{2}\right)}$$
(x^2*y^2*(x^2 - y^2)*(x*(x - y) + y*(x + y)) - y^4*(x + y)*(x - y)*(x^2 + y^2))/((x + y)*(x - y)*(x^2 + y^2)*(x^2 - y^2))
Common denominator [src]
 2
y 
$$y^{2}$$
y^2
Numerical answer [src]
(x/(x + y) + y/(x - y))/(x^(-2) + y^(-2)) - y^4/(x^2 - y^2)
(x/(x + y) + y/(x - y))/(x^(-2) + y^(-2)) - y^4/(x^2 - y^2)
Combining rational expressions [src]
 2 / 2 / 2    2\                            2                 / 2    2\\
y *\x *\x  - y /*(x*(x - y) + y*(x + y)) - y *(x + y)*(x - y)*\x  + y //
------------------------------------------------------------------------
                                  / 2    2\ / 2    2\                   
                  (x + y)*(x - y)*\x  + y /*\x  - y /                   
$$\frac{y^{2} \left(x^{2} \left(x^{2} - y^{2}\right) \left(x \left(x - y\right) + y \left(x + y\right)\right) - y^{2} \left(x - y\right) \left(x + y\right) \left(x^{2} + y^{2}\right)\right)}{\left(x - y\right) \left(x + y\right) \left(x^{2} - y^{2}\right) \left(x^{2} + y^{2}\right)}$$
y^2*(x^2*(x^2 - y^2)*(x*(x - y) + y*(x + y)) - y^2*(x + y)*(x - y)*(x^2 + y^2))/((x + y)*(x - y)*(x^2 + y^2)*(x^2 - y^2))