Mister Exam

Other calculators

How do you (2x+3)/(x^2-9) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
2*x + 3
-------
  2    
 x  - 9
$$\frac{2 x + 3}{x^{2} - 9}$$
(2*x + 3)/(x^2 - 9)
Fraction decomposition [src]
1/(2*(3 + x)) + 3/(2*(-3 + x))
$$\frac{1}{2 \left(x + 3\right)} + \frac{3}{2 \left(x - 3\right)}$$
    1           3     
--------- + ----------
2*(3 + x)   2*(-3 + x)
Combinatorics [src]
    3 + 2*x     
----------------
(-3 + x)*(3 + x)
$$\frac{2 x + 3}{\left(x - 3\right) \left(x + 3\right)}$$
(3 + 2*x)/((-3 + x)*(3 + x))
Numerical answer [src]
(3.0 + 2.0*x)/(-9.0 + x^2)
(3.0 + 2.0*x)/(-9.0 + x^2)