Mister Exam

Factor polynomial x^4+4

An expression to simplify:

The solution

You have entered [src]
 4    
x  + 4
$$x^{4} + 4$$
x^4 + 4
Factorization [src]
(x + 1 + I)*(x + 1 - I)*(x + -1 + I)*(x + -1 - I)
$$\left(x + \left(1 - i\right)\right) \left(x + \left(1 + i\right)\right) \left(x + \left(-1 + i\right)\right) \left(x + \left(-1 - i\right)\right)$$
(((x + 1 + i)*(x + 1 - i))*(x - 1 + i))*(x - 1 - i)
Numerical answer [src]
4.0 + x^4
4.0 + x^4
Combinatorics [src]
/     2      \ /     2      \
\2 + x  - 2*x/*\2 + x  + 2*x/
$$\left(x^{2} - 2 x + 2\right) \left(x^{2} + 2 x + 2\right)$$
(2 + x^2 - 2*x)*(2 + x^2 + 2*x)