Mister Exam

Other calculators

How do you 1/(x^2-x) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
 2    
x  - x
$$\frac{1}{x^{2} - x}$$
1/(x^2 - x)
Fraction decomposition [src]
1/(-1 + x) - 1/x
$$\frac{1}{x - 1} - \frac{1}{x}$$
  1      1
------ - -
-1 + x   x
General simplification [src]
    1     
----------
x*(-1 + x)
$$\frac{1}{x \left(x - 1\right)}$$
1/(x*(-1 + x))
Numerical answer [src]
1/(x^2 - x)
1/(x^2 - x)
Combinatorics [src]
    1     
----------
x*(-1 + x)
$$\frac{1}{x \left(x - 1\right)}$$
1/(x*(-1 + x))
Combining rational expressions [src]
    1     
----------
x*(-1 + x)
$$\frac{1}{x \left(x - 1\right)}$$
1/(x*(-1 + x))