Mister Exam

Other calculators

How do you 1/(x^2+x) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
 2    
x  + x
$$\frac{1}{x^{2} + x}$$
1/(x^2 + x)
General simplification [src]
    1    
---------
x*(1 + x)
$$\frac{1}{x \left(x + 1\right)}$$
1/(x*(1 + x))
Fraction decomposition [src]
1/x - 1/(1 + x)
$$- \frac{1}{x + 1} + \frac{1}{x}$$
1     1  
- - -----
x   1 + x
Combinatorics [src]
    1    
---------
x*(1 + x)
$$\frac{1}{x \left(x + 1\right)}$$
1/(x*(1 + x))
Combining rational expressions [src]
    1    
---------
x*(1 + x)
$$\frac{1}{x \left(x + 1\right)}$$
1/(x*(1 + x))
Numerical answer [src]
1/(x + x^2)
1/(x + x^2)