Mister Exam

Other calculators

How do you 1/(x^4-1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
  1   
------
 4    
x  - 1
$$\frac{1}{x^{4} - 1}$$
1/(x^4 - 1)
Fraction decomposition [src]
-1/(2*(1 + x^2)) - 1/(4*(1 + x)) + 1/(4*(-1 + x))
$$- \frac{1}{2 \left(x^{2} + 1\right)} - \frac{1}{4 \left(x + 1\right)} + \frac{1}{4 \left(x - 1\right)}$$
      1            1           1     
- ---------- - --------- + ----------
    /     2\   4*(1 + x)   4*(-1 + x)
  2*\1 + x /                         
Combinatorics [src]
            1            
-------------------------
        /     2\         
(1 + x)*\1 + x /*(-1 + x)
$$\frac{1}{\left(x - 1\right) \left(x + 1\right) \left(x^{2} + 1\right)}$$
1/((1 + x)*(1 + x^2)*(-1 + x))
Numerical answer [src]
1/(-1.0 + x^4)
1/(-1.0 + x^4)