Mister Exam

Other calculators


1/(x^4-1)

Integral of 1/(x^4-1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |   4       
 |  x  - 1   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{x^{4} - 1}\, dx$$
Integral(1/(x^4 - 1), (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

        PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                  
 |                                                   
 |   1             atan(x)   log(1 + x)   log(-1 + x)
 | ------ dx = C - ------- - ---------- + -----------
 |  4                 2          4             4     
 | x  - 1                                            
 |                                                   
/                                                    
$$\int \frac{1}{x^{4} - 1}\, dx = C + \frac{\log{\left(x - 1 \right)}}{4} - \frac{\log{\left(x + 1 \right)}}{4} - \frac{\operatorname{atan}{\left(x \right)}}{2}$$
The graph
The answer [src]
      pi*I
-oo - ----
       4  
$$-\infty - \frac{i \pi}{4}$$
=
=
      pi*I
-oo - ----
       4  
$$-\infty - \frac{i \pi}{4}$$
-oo - pi*i/4
Numerical answer [src]
-11.5887250733929
-11.5887250733929
The graph
Integral of 1/(x^4-1) dx

    Use the examples entering the upper and lower limits of integration.