1 / | | 1 | ------ dx | 4 | x - 1 | / 0
Integral(1/(x^4 - 1), (x, 0, 1))
Rewrite the integrand:
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
PiecewiseRule(subfunctions=[(ArctanRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), True), (ArccothRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False), (ArctanhRule(a=1, b=1, c=1, context=1/(x**2 + 1), symbol=x), False)], context=1/(x**2 + 1), symbol=x)
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
The result is:
Add the constant of integration:
The answer is:
/ | | 1 atan(x) log(1 + x) log(-1 + x) | ------ dx = C - ------- - ---------- + ----------- | 4 2 4 4 | x - 1 | /
pi*I -oo - ---- 4
=
pi*I -oo - ---- 4
-oo - pi*i/4
Use the examples entering the upper and lower limits of integration.