Mister Exam

Other calculators

How do you (36x-6)/(36x^2-12x+1) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
    36*x - 6    
----------------
    2           
36*x  - 12*x + 1
$$\frac{36 x - 6}{\left(36 x^{2} - 12 x\right) + 1}$$
(36*x - 6)/(36*x^2 - 12*x + 1)
Fraction decomposition [src]
6/(-1 + 6*x)
$$\frac{6}{6 x - 1}$$
   6    
--------
-1 + 6*x
General simplification [src]
   6    
--------
-1 + 6*x
$$\frac{6}{6 x - 1}$$
6/(-1 + 6*x)
Trigonometric part [src]
   -6 + 36*x    
----------------
               2
1 - 12*x + 36*x 
$$\frac{36 x - 6}{36 x^{2} - 12 x + 1}$$
(-6 + 36*x)/(1 - 12*x + 36*x^2)
Numerical answer [src]
(-6.0 + 36.0*x)/(1.0 + 36.0*x^2 - 12.0*x)
(-6.0 + 36.0*x)/(1.0 + 36.0*x^2 - 12.0*x)
Combining rational expressions [src]
    6*(-1 + 6*x)   
-------------------
1 + 12*x*(-1 + 3*x)
$$\frac{6 \left(6 x - 1\right)}{12 x \left(3 x - 1\right) + 1}$$
6*(-1 + 6*x)/(1 + 12*x*(-1 + 3*x))
Common denominator [src]
   6    
--------
-1 + 6*x
$$\frac{6}{6 x - 1}$$
6/(-1 + 6*x)
Combinatorics [src]
   6    
--------
-1 + 6*x
$$\frac{6}{6 x - 1}$$
6/(-1 + 6*x)
Rational denominator [src]
   -6 + 36*x    
----------------
               2
1 - 12*x + 36*x 
$$\frac{36 x - 6}{36 x^{2} - 12 x + 1}$$
(-6 + 36*x)/(1 - 12*x + 36*x^2)
Powers [src]
   -6 + 36*x    
----------------
               2
1 - 12*x + 36*x 
$$\frac{36 x - 6}{36 x^{2} - 12 x + 1}$$
(-6 + 36*x)/(1 - 12*x + 36*x^2)
Assemble expression [src]
   -6 + 36*x    
----------------
               2
1 - 12*x + 36*x 
$$\frac{36 x - 6}{36 x^{2} - 12 x + 1}$$
(-6 + 36*x)/(1 - 12*x + 36*x^2)