Mister Exam

Factor polynomial 3*p3+2*a^210-c^27

An expression to simplify:

The solution

You have entered [src]
          210    27
3*p3 + 2*a    - c  
$$- c^{27} + \left(2 a^{210} + 3 p_{3}\right)$$
3*p3 + 2*a^210 - c^27
General simplification [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
-c^27 + 2.0*a^210 + 3.0*p3
-c^27 + 2.0*a^210 + 3.0*p3
Assemble expression [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
Common denominator [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
Rational denominator [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
Combinatorics [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
Trigonometric part [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
Combining rational expressions [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3
Powers [src]
   27      210
- c   + 2*a    + 3*p3
$$2 a^{210} - c^{27} + 3 p_{3}$$
-c^27 + 2*a^210 + 3*p3