Mister Exam

Factor polynomial z^2+z+1

An expression to simplify:

The solution

You have entered [src]
 2        
z  + z + 1
$$\left(z^{2} + z\right) + 1$$
z^2 + z + 1
General simplification [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
The perfect square
Let's highlight the perfect square of the square three-member
$$\left(z^{2} + z\right) + 1$$
To do this, let's use the formula
$$a z^{2} + b z + c = a \left(m + z\right)^{2} + n$$
where
$$m = \frac{b}{2 a}$$
$$n = \frac{4 a c - b^{2}}{4 a}$$
In this case
$$a = 1$$
$$b = 1$$
$$c = 1$$
Then
$$m = \frac{1}{2}$$
$$n = \frac{3}{4}$$
So,
$$\left(z + \frac{1}{2}\right)^{2} + \frac{3}{4}$$
Factorization [src]
/            ___\ /            ___\
|    1   I*\/ 3 | |    1   I*\/ 3 |
|x + - + -------|*|x + - - -------|
\    2      2   / \    2      2   /
$$\left(x + \left(\frac{1}{2} - \frac{\sqrt{3} i}{2}\right)\right) \left(x + \left(\frac{1}{2} + \frac{\sqrt{3} i}{2}\right)\right)$$
(x + 1/2 + i*sqrt(3)/2)*(x + 1/2 - i*sqrt(3)/2)
Powers [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
Rational denominator [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
Trigonometric part [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
Common denominator [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
Combinatorics [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
Assemble expression [src]
         2
1 + z + z 
$$z^{2} + z + 1$$
1 + z + z^2
Numerical answer [src]
1.0 + z + z^2
1.0 + z + z^2
Combining rational expressions [src]
1 + z*(1 + z)
$$z \left(z + 1\right) + 1$$
1 + z*(1 + z)