Mister Exam

Factor polynomial x^4-1

An expression to simplify:

The solution

You have entered [src]
 4    
x  - 1
$$x^{4} - 1$$
x^4 - 1
Factorization [src]
(x + 1)*(x - 1)*(x + I)*(x - I)
$$\left(x - 1\right) \left(x + 1\right) \left(x + i\right) \left(x - i\right)$$
(((x + 1)*(x - 1))*(x + i))*(x - i)
Numerical answer [src]
-1.0 + x^4
-1.0 + x^4
Combinatorics [src]
        /     2\         
(1 + x)*\1 + x /*(-1 + x)
$$\left(x - 1\right) \left(x + 1\right) \left(x^{2} + 1\right)$$
(1 + x)*(1 + x^2)*(-1 + x)