General simplification
[src]
3 3
/ 4 ___\ / 3/2 \
\-1 + \/ x / *\x - x/
-------------------------
3
/ ___\ 3
\1 - \/ x / *(-1 + x)
$$\frac{\left(\sqrt[4]{x} - 1\right)^{3} \left(x^{\frac{3}{2}} - x\right)^{3}}{\left(1 - \sqrt{x}\right)^{3} \left(x - 1\right)^{3}}$$
(-1 + x^(1/4))^3*(x^(3/2) - x)^3/((1 - sqrt(x))^3*(-1 + x)^3)
Combining rational expressions
[src]
3 3
/ 4 ___\ / 3/2 \
\-1 + \/ x / *\x - x/
------------------------------------------
3
3 / 3/4 ___ / 4 ___\\
(1 - x) *\-1 + x - \/ x *\-1 + \/ x //
$$\frac{\left(\sqrt[4]{x} - 1\right)^{3} \left(x^{\frac{3}{2}} - x\right)^{3}}{\left(1 - x\right)^{3} \left(x^{\frac{3}{4}} - \sqrt{x} \left(\sqrt[4]{x} - 1\right) - 1\right)^{3}}$$
(-1 + x^(1/4))^3*(x^(3/2) - x)^3/((1 - x)^3*(-1 + x^(3/4) - sqrt(x)*(-1 + x^(1/4)))^3)
3
/ 3/2 \
\x - x/
--------------------------------
3
/ 3/4 \
3 | ___ -1 + x |
(1 - x) *|- \/ x + ----------|
| 4 ___|
\ -1 + \/ x /
$$\frac{\left(x^{\frac{3}{2}} - x\right)^{3}}{\left(1 - x\right)^{3} \left(- \sqrt{x} + \frac{x^{\frac{3}{4}} - 1}{\sqrt[4]{x} - 1}\right)^{3}}$$
(x^(3/2) - x)^3/((1 - x)^3*(-sqrt(x) + (-1 + x^(3/4))/(-1 + x^(1/4)))^3)
3
/ ___ \
\x*\/ x - x/
-----------------------------
3
/ 3/4 \
3 | x - 1 ___|
(1 - x) *|--------- - \/ x |
|4 ___ |
\\/ x - 1 /
$$\frac{\left(\sqrt{x} x - x\right)^{3}}{\left(1 - x\right)^{3} \left(- \sqrt{x} + \frac{x^{\frac{3}{4}} - 1}{\sqrt[4]{x} - 1}\right)^{3}}$$
(x*sqrt(x) - x)^3/((1 - x)^3*((x^(3/4) - 1)/(x^(1/4) - 1) - sqrt(x))^3)
Rational denominator
[src]
3 3 3
/ ___\ / 4 ___\ / 3/2 \
-\1 + \/ x / *\-1 + \/ x / *\x - x/
----------------------------------------
6
(-1 + x)
$$- \frac{\left(\sqrt[4]{x} - 1\right)^{3} \left(\sqrt{x} + 1\right)^{3} \left(x^{\frac{3}{2}} - x\right)^{3}}{\left(x - 1\right)^{6}}$$
-(1 + sqrt(x))^3*(-1 + x^(1/4))^3*(x^(3/2) - x)^3/(-1 + x)^6
3
/ 3/2 \
\x - x/
--------------------------------
3
/ 3/4 \
3 | ___ -1 + x |
(1 - x) *|- \/ x + ----------|
| 4 ___|
\ -1 + \/ x /
$$\frac{\left(x^{\frac{3}{2}} - x\right)^{3}}{\left(1 - x\right)^{3} \left(- \sqrt{x} + \frac{x^{\frac{3}{4}} - 1}{\sqrt[4]{x} - 1}\right)^{3}}$$
(x^(3/2) - x)^3/((1 - x)^3*(-sqrt(x) + (-1 + x^(3/4))/(-1 + x^(1/4)))^3)
Assemble expression
[src]
3
/ 3/2 \
\x - x/
--------------------------------
3
/ 3/4 \
3 | ___ -1 + x |
(1 - x) *|- \/ x + ----------|
| 4 ___|
\ -1 + \/ x /
$$\frac{\left(x^{\frac{3}{2}} - x\right)^{3}}{\left(1 - x\right)^{3} \left(- \sqrt{x} + \frac{x^{\frac{3}{4}} - 1}{\sqrt[4]{x} - 1}\right)^{3}}$$
(x^(3/2) - x)^3/((1 - x)^3*(-sqrt(x) + (-1 + x^(3/4))/(-1 + x^(1/4)))^3)
(x^1.5 - x)^3/((1.0 - x)^3*(-x^0.5 + (-1.0 + x^0.75)/(-1.0 + x^0.25))^3)
(x^1.5 - x)^3/((1.0 - x)^3*(-x^0.5 + (-1.0 + x^0.75)/(-1.0 + x^0.25))^3)
3 3
/ 4 ___\ / 3/2\
\-1 + \/ x / *\x - x /
-------------------------
3
3 / ___\
(-1 + x) *\-1 + \/ x /
$$\frac{\left(\sqrt[4]{x} - 1\right)^{3} \left(- x^{\frac{3}{2}} + x\right)^{3}}{\left(\sqrt{x} - 1\right)^{3} \left(x - 1\right)^{3}}$$
(-1 + x^(1/4))^3*(x - x^(3/2))^3/((-1 + x)^3*(-1 + sqrt(x))^3)
2 5/2 ___ 15/4 7/2 9/2 21/4 11/2 13/4 17/4 3 3/2
14 14 - 84*x - 60*x - 42*\/ x - 24*x - 18*x - 10*x - 3*x + 3*x + 3*x + 9*x + 18*x + 91*x + 103*x
- -- - x - --------------------------------------------------------------------------------------------------------------------------------
3 3 3/2 9/2 ___ 4 2 5/2
-3 - 24*x - 24*x - 3*x + 9*\/ x + 9*x + 18*x + 18*x
$$- x - \frac{14}{3} - \frac{- 3 x^{\frac{21}{4}} + 18 x^{\frac{17}{4}} - 24 x^{\frac{15}{4}} + 9 x^{\frac{13}{4}} + 3 x^{\frac{11}{2}} - 10 x^{\frac{9}{2}} - 18 x^{\frac{7}{2}} - 60 x^{\frac{5}{2}} + 103 x^{\frac{3}{2}} - 42 \sqrt{x} + 91 x^{3} - 84 x^{2} + 3 x + 14}{- 3 x^{\frac{9}{2}} + 18 x^{\frac{5}{2}} - 24 x^{\frac{3}{2}} + 9 \sqrt{x} + 9 x^{4} - 24 x^{3} + 18 x^{2} - 3}$$
-14/3 - x - (14 - 84*x^2 - 60*x^(5/2) - 42*sqrt(x) - 24*x^(15/4) - 18*x^(7/2) - 10*x^(9/2) - 3*x^(21/4) + 3*x + 3*x^(11/2) + 9*x^(13/4) + 18*x^(17/4) + 91*x^3 + 103*x^(3/2))/(-3 - 24*x^3 - 24*x^(3/2) - 3*x^(9/2) + 9*sqrt(x) + 9*x^4 + 18*x^2 + 18*x^(5/2))