Mister Exam

Other calculators

Least common denominator sqrt(m)/(m-16)-sqrt(m)/((4-sqrt(m))^2)

An expression to simplify:

The solution

You have entered [src]
  ___         ___    
\/ m        \/ m     
------ - ------------
m - 16              2
         /      ___\ 
         \4 - \/ m / 
$$\frac{\sqrt{m}}{m - 16} - \frac{\sqrt{m}}{\left(4 - \sqrt{m}\right)^{2}}$$
sqrt(m)/(m - 16) - sqrt(m)/(4 - sqrt(m))^2
General simplification [src]
      /                 2    \
  ___ |     /       ___\     |
\/ m *\16 + \-4 + \/ m /  - m/
------------------------------
                         2    
             /       ___\     
   (-16 + m)*\-4 + \/ m /     
$$\frac{\sqrt{m} \left(- m + \left(\sqrt{m} - 4\right)^{2} + 16\right)}{\left(\sqrt{m} - 4\right)^{2} \left(m - 16\right)}$$
sqrt(m)*(16 + (-4 + sqrt(m))^2 - m)/((-16 + m)*(-4 + sqrt(m))^2)
Rational denominator [src]
                  2                       2                     2            2
   3/2 /      ___\         ___ /      ___\      ___ /       ___\  /      ___\ 
- m   *\4 + \/ m /  + 16*\/ m *\4 + \/ m /  + \/ m *\-4 + \/ m / *\4 + \/ m / 
------------------------------------------------------------------------------
                                           3                                  
                                  (-16 + m)                                   
$$\frac{- m^{\frac{3}{2}} \left(\sqrt{m} + 4\right)^{2} + \sqrt{m} \left(\sqrt{m} - 4\right)^{2} \left(\sqrt{m} + 4\right)^{2} + 16 \sqrt{m} \left(\sqrt{m} + 4\right)^{2}}{\left(m - 16\right)^{3}}$$
(-m^(3/2)*(4 + sqrt(m))^2 + 16*sqrt(m)*(4 + sqrt(m))^2 + sqrt(m)*(-4 + sqrt(m))^2*(4 + sqrt(m))^2)/(-16 + m)^3
Numerical answer [src]
m^0.5/(-16.0 + m) - 0.0625*m^0.5/(1 - 0.25*m^0.5)^2
m^0.5/(-16.0 + m) - 0.0625*m^0.5/(1 - 0.25*m^0.5)^2
Combinatorics [src]
            ___       
       -8*\/ m        
----------------------
          /       ___\
(-16 + m)*\-4 + \/ m /
$$- \frac{8 \sqrt{m}}{\left(\sqrt{m} - 4\right) \left(m - 16\right)}$$
-8*sqrt(m)/((-16 + m)*(-4 + sqrt(m)))
Common denominator [src]
      /       ___      \      
     -\- 32*\/ m  + 8*m/      
------------------------------
        2      3/2         ___
-256 + m  - 8*m    + 128*\/ m 
$$- \frac{- 32 \sqrt{m} + 8 m}{- 8 m^{\frac{3}{2}} + 128 \sqrt{m} + m^{2} - 256}$$
-(-32*sqrt(m) + 8*m)/(-256 + m^2 - 8*m^(3/2) + 128*sqrt(m))
Combining rational expressions [src]
      /                2    \
  ___ |     /      ___\     |
\/ m *\16 + \4 - \/ m /  - m/
-----------------------------
                         2   
              /      ___\    
    (-16 + m)*\4 - \/ m /    
$$\frac{\sqrt{m} \left(- m + \left(4 - \sqrt{m}\right)^{2} + 16\right)}{\left(4 - \sqrt{m}\right)^{2} \left(m - 16\right)}$$
sqrt(m)*(16 + (4 - sqrt(m))^2 - m)/((-16 + m)*(4 - sqrt(m))^2)