Mister Exam

Other calculators

Least common denominator cos(sqrt(g/h)*t-sqrt((l+h)/h)*acos((d*(h+l))/(l*(2*z+d))))

An expression to simplify:

The solution

You have entered [src]
   /    ___         _______                  \
   |   / g         / l + h      / d*(h + l) \|
cos|  /  - *t -   /  ----- *acos|-----------||
   \\/   h      \/     h        \l*(2*z + d)//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}$$
cos(sqrt(g/h)*t - sqrt((l + h)/h)*acos((d*(h + l))/((l*(2*z + d)))))
Fraction decomposition [src]
cos(sqrt(g/h)*t - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
   /    ___         _______                                \
   |   / g         /     l      /    d*h           d*l    \|
cos|  /  - *t -   /  1 + - *acos|----------- + -----------||
   \\/   h      \/       h      \d*l + 2*l*z   d*l + 2*l*z//
Common denominator [src]
   /      ___       _______                                \
   |     / g       /     l      /    d*h           d*l    \|
cos|t*  /  -  -   /  1 + - *acos|----------- + -----------||
   \  \/   h    \/       h      \d*l + 2*l*z   d*l + 2*l*z//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
Numerical answer [src]
cos(sqrt(g/h)*t - sqrt((l + h)/h)*acos((d*(h + l))/((l*(2*z + d)))))
cos(sqrt(g/h)*t - sqrt((l + h)/h)*acos((d*(h + l))/((l*(2*z + d)))))
Rational denominator [src]
   /      ___       _______                                \
   |     / g       /     l      /    d*h           d*l    \|
cos|t*  /  -  -   /  1 + - *acos|----------- + -----------||
   \  \/   h    \/       h      \d*l + 2*l*z   d*l + 2*l*z//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
Powers [src]
   /      ___       _______                  \      /    _______                           ___\
   |     / g       / h + l      / d*(h + l) \|      |   / h + l      / d*(h + l) \        / g |
 I*|t*  /  -  -   /  ----- *acos|-----------||    I*|  /  ----- *acos|-----------| - t*  /  - |
   \  \/   h    \/     h        \l*(d + 2*z)//      \\/     h        \l*(d + 2*z)/     \/   h /
e                                                e                                             
---------------------------------------------- + ----------------------------------------------
                      2                                                2                       
$$\frac{e^{i \left(- t \sqrt{\frac{g}{h}} + \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}\right)}}{2} + \frac{e^{i \left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}\right)}}{2}$$
exp(i*(t*sqrt(g/h) - sqrt((h + l)/h)*acos(d*(h + l)/(l*(d + 2*z)))))/2 + exp(i*(sqrt((h + l)/h)*acos(d*(h + l)/(l*(d + 2*z))) - t*sqrt(g/h)))/2
Combinatorics [src]
   /      ___       _______                                \
   |     / g       /     l      /    d*h           d*l    \|
cos|t*  /  -  -   /  1 + - *acos|----------- + -----------||
   \  \/   h    \/       h      \d*l + 2*l*z   d*l + 2*l*z//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
Expand expression [src]
   /            ___       ___                            \
   |    ___    / 1       / 1    _______     / d*(h + l) \|
cos|t*\/ g *  /  -  -   /  - *\/ l + h *acos|-----------||
   \        \/   h    \/   h                \l*(2*z + d)//
$$\cos{\left(\sqrt{g} t \sqrt{\frac{1}{h}} - \sqrt{h + l} \sqrt{\frac{1}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}$$
   /    ___  \    /    _______                                \      /    ___  \    /    _______                                \
   |   / g   |    |   /     l      /    d*h           d*l    \|      |   / g   |    |   /     l      /    d*h           d*l    \|
cos|  /  - *t|*cos|  /  1 + - *acos|----------- + -----------|| + sin|  /  - *t|*sin|  /  1 + - *acos|----------- + -----------||
   \\/   h   /    \\/       h      \d*l + 2*l*z   d*l + 2*l*z//      \\/   h   /    \\/       h      \d*l + 2*l*z   d*l + 2*l*z//
$$\sin{\left(t \sqrt{\frac{g}{h}} \right)} \sin{\left(\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)} + \cos{\left(t \sqrt{\frac{g}{h}} \right)} \cos{\left(\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(sqrt(g/h)*t)*cos(sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z))) + sin(sqrt(g/h)*t)*sin(sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
Trigonometric part [src]
         /                            /  /    h\\\
         |      ___       _______     |d*|1 + -|||
         |     / g       /     l      |  \    l/||
         |t*  /  -      /  1 + - *acos|---------||
        2|  \/   h    \/       h      \ d + 2*z /|
-1 + cot |--------- - ---------------------------|
         \    2                    2             /
--------------------------------------------------
        /                            /  /    h\\\ 
        |      ___       _______     |d*|1 + -||| 
        |     / g       /     l      |  \    l/|| 
        |t*  /  -      /  1 + - *acos|---------|| 
       2|  \/   h    \/       h      \ d + 2*z /| 
1 + cot |--------- - ---------------------------| 
        \    2                    2             / 
$$\frac{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)} - 1}{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)} + 1}$$
                         1                         
---------------------------------------------------
   /         _______                           ___\
   |pi      / h + l      / d*(h + l) \        / g |
csc|-- +   /  ----- *acos|-----------| - t*  /  - |
   \2    \/     h        \l*(d + 2*z)/     \/   h /
$$\frac{1}{\csc{\left(- t \sqrt{\frac{g}{h}} + \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} + \frac{\pi}{2} \right)}}$$
                      1                       
----------------------------------------------
   /      ___       _______                  \
   |     / g       / h + l      / d*(h + l) \|
sec|t*  /  -  -   /  ----- *acos|-----------||
   \  \/   h    \/     h        \l*(d + 2*z)//
$$\frac{1}{\sec{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}}$$
        /         _______                           ___\
        |        / h + l      / d*(h + l) \        / g |
        |       /  ----- *acos|-----------|   t*  /  - |
       2|pi   \/     h        \l*(d + 2*z)/     \/   h |
    csc |-- + ----------------------------- - ---------|
        \2                  2                     2    /
1 - ----------------------------------------------------
          /      ___       _______                  \   
          |     / g       / h + l      / d*(h + l) \|   
          |t*  /  -      /  ----- *acos|-----------||   
         2|  \/   h    \/     h        \l*(d + 2*z)/|   
      csc |--------- - -----------------------------|   
          \    2                     2              /   
--------------------------------------------------------
        /         _______                           ___\
        |        / h + l      / d*(h + l) \        / g |
        |       /  ----- *acos|-----------|   t*  /  - |
       2|pi   \/     h        \l*(d + 2*z)/     \/   h |
    csc |-- + ----------------------------- - ---------|
        \2                  2                     2    /
1 + ----------------------------------------------------
          /      ___       _______                  \   
          |     / g       / h + l      / d*(h + l) \|   
          |t*  /  -      /  ----- *acos|-----------||   
         2|  \/   h    \/     h        \l*(d + 2*z)/|   
      csc |--------- - -----------------------------|   
          \    2                     2              /   
$$\frac{1 - \frac{\csc^{2}{\left(- \frac{t \sqrt{\frac{g}{h}}}{2} + \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}{1 + \frac{\csc^{2}{\left(- \frac{t \sqrt{\frac{g}{h}}}{2} + \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} + \frac{\pi}{2} \right)}}{\csc^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}$$
                        1                        
-------------------------------------------------
   /                     /  /    h\\            \
   |         _______     |d*|1 + -||         ___|
   |pi      /     l      |  \    l/|        / g |
csc|-- +   /  1 + - *acos|---------| - t*  /  - |
   \2    \/       h      \ d + 2*z /     \/   h /
$$\frac{1}{\csc{\left(- t \sqrt{\frac{g}{h}} + \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} + \frac{\pi}{2} \right)}}$$
   /           ___       _______                  \
   |pi        / g       / h + l      / d*(h + l) \|
sin|-- + t*  /  -  -   /  ----- *acos|-----------||
   \2      \/   h    \/     h        \l*(d + 2*z)//
$$\sin{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} + \frac{\pi}{2} \right)}$$
        /             ___       _______                  \
        |            / g       / h + l      / d*(h + l) \|
        |       t*  /  -      /  ----- *acos|-----------||
       2|  pi     \/   h    \/     h        \l*(d + 2*z)/|
    cos |- -- + --------- - -----------------------------|
        \  2        2                     2              /
1 - ------------------------------------------------------
           /      ___       _______                  \    
           |     / g       / h + l      / d*(h + l) \|    
           |t*  /  -      /  ----- *acos|-----------||    
          2|  \/   h    \/     h        \l*(d + 2*z)/|    
       cos |--------- - -----------------------------|    
           \    2                     2              /    
----------------------------------------------------------
        /             ___       _______                  \
        |            / g       / h + l      / d*(h + l) \|
        |       t*  /  -      /  ----- *acos|-----------||
       2|  pi     \/   h    \/     h        \l*(d + 2*z)/|
    cos |- -- + --------- - -----------------------------|
        \  2        2                     2              /
1 + ------------------------------------------------------
           /      ___       _______                  \    
           |     / g       / h + l      / d*(h + l) \|    
           |t*  /  -      /  ----- *acos|-----------||    
          2|  \/   h    \/     h        \l*(d + 2*z)/|    
       cos |--------- - -----------------------------|    
           \    2                     2              /    
$$\frac{1 - \frac{\cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}{1 + \frac{\cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} - \frac{\pi}{2} \right)}}{\cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}$$
         /  /                            /  /    h\\\\                                               
         |  |      ___       _______     |d*|1 + -||||                                               
         |  |     / g       /     l      |  \    l/|||      /                            /  /    h\\\
      cos|2*|t*  /  -  -   /  1 + - *acos|---------|||      |      ___       _______     |d*|1 + -|||
  1      \  \  \/   h    \/       h      \ d + 2*z ///      |     / g       /     l      |  \    l/||
- - - ------------------------------------------------ + cos|t*  /  -  -   /  1 + - *acos|---------||
  2                          2                              \  \/   h    \/       h      \ d + 2*z //
-----------------------------------------------------------------------------------------------------
                                  /                            /  /    h\\\                          
                                  |      ___       _______     |d*|1 + -|||                          
                                  |     / g       /     l      |  \    l/||                          
                           1 - cos|t*  /  -  -   /  1 + - *acos|---------||                          
                                  \  \/   h    \/       h      \ d + 2*z //                          
$$\frac{\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} \right)} - \frac{\cos{\left(2 \left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}\right) \right)}}{2} - \frac{1}{2}}{1 - \cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} \right)}}$$
          /      ___       _______                  \
          |     / g       / h + l      / d*(h + l) \|
          |t*  /  -      /  ----- *acos|-----------||
         4|  \/   h    \/     h        \l*(d + 2*z)/|
    4*sin |--------- - -----------------------------|
          \    2                     2              /
1 - -------------------------------------------------
         /      ___       _______                  \ 
        2|     / g       / h + l      / d*(h + l) \| 
     sin |t*  /  -  -   /  ----- *acos|-----------|| 
         \  \/   h    \/     h        \l*(d + 2*z)// 
-----------------------------------------------------
          /      ___       _______                  \
          |     / g       / h + l      / d*(h + l) \|
          |t*  /  -      /  ----- *acos|-----------||
         4|  \/   h    \/     h        \l*(d + 2*z)/|
    4*sin |--------- - -----------------------------|
          \    2                     2              /
1 + -------------------------------------------------
         /      ___       _______                  \ 
        2|     / g       / h + l      / d*(h + l) \| 
     sin |t*  /  -  -   /  ----- *acos|-----------|| 
         \  \/   h    \/     h        \l*(d + 2*z)// 
$$\frac{- \frac{4 \sin^{4}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\sin^{2}{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}} + 1}{\frac{4 \sin^{4}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\sin^{2}{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}} + 1}$$
      /                  /  /    h\\            \                                                       
      |      _______     |d*|1 + -||         ___|                                                       
      |     /     l      |  \    l/|        / g |                                                       
      |    /  1 + - *acos|---------|   t*  /  - |                                                       
     2|  \/       h      \ d + 2*z /     \/   h | /                            1                       \
4*tan |- --------------------------- + ---------|*|-1 + -----------------------------------------------|
      \               4                    4    / |         /      ___       _______                  \|
                                                  |         |     / g       / h + l      / d*(h + l) \||
                                                  |         |t*  /  -      /  ----- *acos|-----------|||
                                                  |        2|  \/   h    \/     h        \l*(d + 2*z)/||
                                                  |     tan |--------- - -----------------------------||
                                                  \         \    2                     2              //
--------------------------------------------------------------------------------------------------------
                                                                              2                         
                         /        /                  /  /    h\\            \\                          
                         |        |      _______     |d*|1 + -||         ___||                          
                         |        |     /     l      |  \    l/|        / g ||                          
                         |        |    /  1 + - *acos|---------|   t*  /  - ||                          
                         |       2|  \/       h      \ d + 2*z /     \/   h ||                          
                         |1 + tan |- --------------------------- + ---------||                          
                         \        \               4                    4    //                          
$$\frac{4 \left(-1 + \frac{1}{\tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}\right) \tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{4} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{4} \right)}}{\left(\tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{4} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{4} \right)} + 1\right)^{2}}$$
                           1                       
1 - -----------------------------------------------
        /      ___       _______                  \
        |     / g       / h + l      / d*(h + l) \|
        |t*  /  -      /  ----- *acos|-----------||
       2|  \/   h    \/     h        \l*(d + 2*z)/|
    cot |--------- - -----------------------------|
        \    2                     2              /
---------------------------------------------------
                           1                       
1 + -----------------------------------------------
        /      ___       _______                  \
        |     / g       / h + l      / d*(h + l) \|
        |t*  /  -      /  ----- *acos|-----------||
       2|  \/   h    \/     h        \l*(d + 2*z)/|
    cot |--------- - -----------------------------|
        \    2                     2              /
$$\frac{1 - \frac{1}{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}{1 + \frac{1}{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}$$
           /      ___       _______                  \   
           |     / g       / h + l      / d*(h + l) \|   
           |t*  /  -      /  ----- *acos|-----------||   
          2|  \/   h    \/     h        \l*(d + 2*z)/|   
       csc |--------- - -----------------------------|   
           \    2                     2              /   
-1 + ----------------------------------------------------
         /         _______                           ___\
         |        / h + l      / d*(h + l) \        / g |
         |       /  ----- *acos|-----------|   t*  /  - |
        2|pi   \/     h        \l*(d + 2*z)/     \/   h |
     csc |-- + ----------------------------- - ---------|
         \2                  2                     2    /
---------------------------------------------------------
          /                            /  /    h\\\      
          |      ___       _______     |d*|1 + -|||      
          |     / g       /     l      |  \    l/||      
          |t*  /  -      /  1 + - *acos|---------||      
         2|  \/   h    \/       h      \ d + 2*z /|      
      csc |--------- - ---------------------------|      
          \    2                    2             /      
$$\frac{\frac{\csc^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\csc^{2}{\left(- \frac{t \sqrt{\frac{g}{h}}}{2} + \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} + \frac{\pi}{2} \right)}} - 1}{\csc^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}}$$
      /                  /  /    h\\            \     /                            /  /    h\\\                                                       
      |      _______     |d*|1 + -||         ___|     |      ___       _______     |d*|1 + -||| /         /      ___       _______                  \\
      |     /     l      |  \    l/|        / g |     |     / g       /     l      |  \    l/|| |         |     / g       / h + l      / d*(h + l) \||
      |    /  1 + - *acos|---------|   t*  /  - |     |t*  /  -  -   /  1 + - *acos|---------|| |         |t*  /  -      /  ----- *acos|-----------|||
     2|  \/       h      \ d + 2*z /     \/   h |    4|  \/   h    \/       h      \ d + 2*z /| |        2|  \/   h    \/     h        \l*(d + 2*z)/||
4*cot |- --------------------------- + ---------|*sin |---------------------------------------|*|-1 + cot |--------- - -----------------------------||
      \               4                    4    /     \                   4                   / \         \    2                     2              //
$$4 \left(\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)} - 1\right) \sin^{4}{\left(\frac{t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{4} \right)} \cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{4} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{4} \right)}$$
        /      ___       _______                  \
        |     / g       / h + l      / d*(h + l) \|
        |t*  /  -      /  ----- *acos|-----------||
       2|  \/   h    \/     h        \l*(d + 2*z)/|
1 - tan |--------- - -----------------------------|
        \    2                     2              /
---------------------------------------------------
        /      ___       _______                  \
        |     / g       / h + l      / d*(h + l) \|
        |t*  /  -      /  ----- *acos|-----------||
       2|  \/   h    \/     h        \l*(d + 2*z)/|
1 + tan |--------- - -----------------------------|
        \    2                     2              /
$$\frac{1 - \tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)} + 1}$$
                                                     /            /      ___       _______                  \    \
    /                                   /  /    h\\\ |            |     / g       / h + l      / d*(h + l) \|    |
    |             ___       _______     |d*|1 + -||| |            |t*  /  -      /  ----- *acos|-----------||    |
    |            / g       /     l      |  \    l/|| |           2|  \/   h    \/     h        \l*(d + 2*z)/|    |
    |       t*  /  -      /  1 + - *acos|---------|| |        cos |--------- - -----------------------------|    |
   2|  pi     \/   h    \/       h      \ d + 2*z /| |            \    2                     2              /    |
cos |- -- + --------- - ---------------------------|*|-1 + ------------------------------------------------------|
    \  2        2                    2             / |         /             ___       _______                  \|
                                                     |         |            / g       / h + l      / d*(h + l) \||
                                                     |         |       t*  /  -      /  ----- *acos|-----------|||
                                                     |        2|  pi     \/   h    \/     h        \l*(d + 2*z)/||
                                                     |     cos |- -- + --------- - -----------------------------||
                                                     \         \  2        2                     2              //
$$\left(\frac{\cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} - \frac{\pi}{2} \right)}} - 1\right) \cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} - \frac{\pi}{2} \right)}$$
      /                  /  /    h\\            \                                                       
      |      _______     |d*|1 + -||         ___| /         /      ___       _______                  \\
      |     /     l      |  \    l/|        / g | |         |     / g       / h + l      / d*(h + l) \||
      |    /  1 + - *acos|---------|   t*  /  - | |         |t*  /  -      /  ----- *acos|-----------|||
     2|  \/       h      \ d + 2*z /     \/   h | |        2|  \/   h    \/     h        \l*(d + 2*z)/||
4*cot |- --------------------------- + ---------|*|-1 + cot |--------- - -----------------------------||
      \               4                    4    / \         \    2                     2              //
--------------------------------------------------------------------------------------------------------
                                                                              2                         
                         /        /                  /  /    h\\            \\                          
                         |        |      _______     |d*|1 + -||         ___||                          
                         |        |     /     l      |  \    l/|        / g ||                          
                         |        |    /  1 + - *acos|---------|   t*  /  - ||                          
                         |       2|  \/       h      \ d + 2*z /     \/   h ||                          
                         |1 + cot |- --------------------------- + ---------||                          
                         \        \               4                    4    //                          
$$\frac{4 \left(\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)} - 1\right) \cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{4} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{4} \right)}}{\left(\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{4} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{4} \right)} + 1\right)^{2}}$$
          /                            /  /    h\\\
          |      ___       _______     |d*|1 + -|||
          |     / g       /     l      |  \    l/||
          |t*  /  -  -   /  1 + - *acos|---------||
         4|  \/   h    \/       h      \ d + 2*z /|
    4*sin |---------------------------------------|
          \                   2                   /
1 - -----------------------------------------------
        /      ___       _______                  \
       2|     / g       / h + l      / d*(h + l) \|
    sin |t*  /  -  -   /  ----- *acos|-----------||
        \  \/   h    \/     h        \l*(d + 2*z)//
---------------------------------------------------
          /                            /  /    h\\\
          |      ___       _______     |d*|1 + -|||
          |     / g       /     l      |  \    l/||
          |t*  /  -  -   /  1 + - *acos|---------||
         4|  \/   h    \/       h      \ d + 2*z /|
    4*sin |---------------------------------------|
          \                   2                   /
1 + -----------------------------------------------
        /      ___       _______                  \
       2|     / g       / h + l      / d*(h + l) \|
    sin |t*  /  -  -   /  ----- *acos|-----------||
        \  \/   h    \/     h        \l*(d + 2*z)//
$$\frac{1 - \frac{4 \sin^{4}{\left(\frac{t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}}{\sin^{2}{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}}}{1 + \frac{4 \sin^{4}{\left(\frac{t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}}{\sin^{2}{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}}}$$
         /      ___       _______                  \
         |     / g       / h + l      / d*(h + l) \|
         |t*  /  -      /  ----- *acos|-----------||
        2|  \/   h    \/     h        \l*(d + 2*z)/|
-1 + cot |--------- - -----------------------------|
         \    2                     2              /
----------------------------------------------------
        /      ___       _______                  \ 
        |     / g       / h + l      / d*(h + l) \| 
        |t*  /  -      /  ----- *acos|-----------|| 
       2|  \/   h    \/     h        \l*(d + 2*z)/| 
1 + cot |--------- - -----------------------------| 
        \    2                     2              / 
$$\frac{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)} - 1}{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)} + 1}$$
    /                            /  /    h\\\                                                      
    |      ___       _______     |d*|1 + -|||                                                      
    |     / g       /     l      |  \    l/||                                                      
    |t*  /  -  -   /  1 + - *acos|---------||                                                      
   2|  \/   h    \/       h      \ d + 2*z /| /                           1                       \
cos |---------------------------------------|*|1 - -----------------------------------------------|
    \                   2                   / |        /      ___       _______                  \|
                                              |        |     / g       / h + l      / d*(h + l) \||
                                              |        |t*  /  -      /  ----- *acos|-----------|||
                                              |       2|  \/   h    \/     h        \l*(d + 2*z)/||
                                              |    cot |--------- - -----------------------------||
                                              \        \    2                     2              //
$$\left(1 - \frac{1}{\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}\right) \cos^{2}{\left(\frac{t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}$$
       /                            /  /    h\\\                                             
       |      ___       _______     |d*|1 + -|||                                             
       |     / g       /     l      |  \    l/||    /                            /  /    h\\\
       |t*  /  -  -   /  1 + - *acos|---------||    |      ___       _______     |d*|1 + -|||
      2|  \/   h    \/       h      \ d + 2*z /|    |     / g       /     l      |  \    l/||
-2*sin |---------------------------------------|*cos|t*  /  -  -   /  1 + - *acos|---------||
       \                   2                   /    \  \/   h    \/       h      \ d + 2*z //
---------------------------------------------------------------------------------------------
                              /                            /  /    h\\\                      
                              |      ___       _______     |d*|1 + -|||                      
                              |     / g       /     l      |  \    l/||                      
                      -1 + cos|t*  /  -  -   /  1 + - *acos|---------||                      
                              \  \/   h    \/       h      \ d + 2*z //                      
$$- \frac{2 \sin^{2}{\left(\frac{t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)} \cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} \right)}}{\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} \right)} - 1}$$
    /                            /  /    h\\\                                                         
    |      ___       _______     |d*|1 + -||| /          /      ___       _______                  \ \
    |     / g       /     l      |  \    l/|| |         2|     / g       / h + l      / d*(h + l) \| |
    |t*  /  -      /  1 + - *acos|---------|| |      sin |t*  /  -  -   /  ----- *acos|-----------|| |
   2|  \/   h    \/       h      \ d + 2*z /| |          \  \/   h    \/     h        \l*(d + 2*z)// |
sin |--------- - ---------------------------|*|-1 + -------------------------------------------------|
    \    2                    2             / |           /      ___       _______                  \|
                                              |           |     / g       / h + l      / d*(h + l) \||
                                              |           |t*  /  -      /  ----- *acos|-----------|||
                                              |          4|  \/   h    \/     h        \l*(d + 2*z)/||
                                              |     4*sin |--------- - -----------------------------||
                                              \           \    2                     2              //
$$\left(-1 + \frac{\sin^{2}{\left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}}{4 \sin^{4}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}\right) \sin^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}$$
   /                                 /  /    h\\\
   |           ___       _______     |d*|1 + -|||
   |pi        / g       /     l      |  \    l/||
sin|-- + t*  /  -  -   /  1 + - *acos|---------||
   \2      \/   h    \/       h      \ d + 2*z //
$$\sin{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} + \frac{\pi}{2} \right)}$$
        /                            /  /    h\\\
        |      ___       _______     |d*|1 + -|||
        |     / g       /     l      |  \    l/||
        |t*  /  -      /  1 + - *acos|---------||
       2|  \/   h    \/       h      \ d + 2*z /|
1 - tan |--------- - ---------------------------|
        \    2                    2             /
-------------------------------------------------
        /                            /  /    h\\\
        |      ___       _______     |d*|1 + -|||
        |     / g       /     l      |  \    l/||
        |t*  /  -      /  1 + - *acos|---------||
       2|  \/   h    \/       h      \ d + 2*z /|
1 + tan |--------- - ---------------------------|
        \    2                    2             /
$$\frac{1 - \tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}}{\tan^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)} + 1}$$
   /                            /  /    h\\\
   |      ___       _______     |d*|1 + -|||
   |     / g       /     l      |  \    l/||
cos|t*  /  -  -   /  1 + - *acos|---------||
   \  \/   h    \/       h      \ d + 2*z //
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} \right)}$$
           /      ___       _______                  \    
           |     / g       / h + l      / d*(h + l) \|    
           |t*  /  -      /  ----- *acos|-----------||    
          2|  \/   h    \/     h        \l*(d + 2*z)/|    
       sec |--------- - -----------------------------|    
           \    2                     2              /    
1 - ------------------------------------------------------
        /             ___       _______                  \
        |            / g       / h + l      / d*(h + l) \|
        |       t*  /  -      /  ----- *acos|-----------||
       2|  pi     \/   h    \/     h        \l*(d + 2*z)/|
    sec |- -- + --------- - -----------------------------|
        \  2        2                     2              /
----------------------------------------------------------
           /      ___       _______                  \    
           |     / g       / h + l      / d*(h + l) \|    
           |t*  /  -      /  ----- *acos|-----------||    
          2|  \/   h    \/     h        \l*(d + 2*z)/|    
       sec |--------- - -----------------------------|    
           \    2                     2              /    
1 + ------------------------------------------------------
        /             ___       _______                  \
        |            / g       / h + l      / d*(h + l) \|
        |       t*  /  -      /  ----- *acos|-----------||
       2|  pi     \/   h    \/     h        \l*(d + 2*z)/|
    sec |- -- + --------- - -----------------------------|
        \  2        2                     2              /
$$\frac{- \frac{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} - \frac{\pi}{2} \right)}} + 1}{\frac{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} - \frac{\pi}{2} \right)}} + 1}$$
                     1                      
--------------------------------------------
   /                            /  /    h\\\
   |      ___       _______     |d*|1 + -|||
   |     / g       /     l      |  \    l/||
sec|t*  /  -  -   /  1 + - *acos|---------||
   \  \/   h    \/       h      \ d + 2*z //
$$\frac{1}{\sec{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)} \right)}}$$
         /             ___       _______                  \
         |            / g       / h + l      / d*(h + l) \|
         |       t*  /  -      /  ----- *acos|-----------||
        2|  pi     \/   h    \/     h        \l*(d + 2*z)/|
     sec |- -- + --------- - -----------------------------|
         \  2        2                     2              /
-1 + ------------------------------------------------------
            /      ___       _______                  \    
            |     / g       / h + l      / d*(h + l) \|    
            |t*  /  -      /  ----- *acos|-----------||    
           2|  \/   h    \/     h        \l*(d + 2*z)/|    
        sec |--------- - -----------------------------|    
            \    2                     2              /    
-----------------------------------------------------------
        /                                   /  /    h\\\   
        |             ___       _______     |d*|1 + -|||   
        |            / g       /     l      |  \    l/||   
        |       t*  /  -      /  1 + - *acos|---------||   
       2|  pi     \/   h    \/       h      \ d + 2*z /|   
    sec |- -- + --------- - ---------------------------|   
        \  2        2                    2             /   
$$\frac{-1 + \frac{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} - \frac{\pi}{2} \right)}}{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)}}}{\sec^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} - \frac{\pi}{2} \right)}}$$
    /                            /  /    h\\\                                                       
    |      ___       _______     |d*|1 + -||| /         /      ___       _______                  \\
    |     / g       /     l      |  \    l/|| |         |     / g       / h + l      / d*(h + l) \||
    |t*  /  -  -   /  1 + - *acos|---------|| |         |t*  /  -      /  ----- *acos|-----------|||
   2|  \/   h    \/       h      \ d + 2*z /| |        2|  \/   h    \/     h        \l*(d + 2*z)/||
sin |---------------------------------------|*|-1 + cot |--------- - -----------------------------||
    \                   2                   / \         \    2                     2              //
$$\left(\cot^{2}{\left(\frac{t \sqrt{\frac{g}{h}}}{2} - \frac{\sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}}{2} \right)} - 1\right) \sin^{2}{\left(\frac{t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d \left(\frac{h}{l} + 1\right)}{d + 2 z} \right)}}{2} \right)}$$
sin((t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*(1 + h/l)/(d + 2*z)))/2)^2*(-1 + cot(t*sqrt(g/h)/2 - sqrt((h + l)/h)*acos(d*(h + l)/(l*(d + 2*z)))/2)^2)