Fraction decomposition
[src]
cos(sqrt(g/h)*t - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
/ ___ _______ \
| / g / l / d*h d*l \|
cos| / - *t - / 1 + - *acos|----------- + -----------||
\\/ h \/ h \d*l + 2*l*z d*l + 2*l*z//
cos(sqrt(g/h)*t - sqrt((l + h)/h)*acos((d*(h + l))/((l*(2*z + d)))))
cos(sqrt(g/h)*t - sqrt((l + h)/h)*acos((d*(h + l))/((l*(2*z + d)))))
/ ___ _______ \
| / g / l / d*h d*l \|
cos|t* / - - / 1 + - *acos|----------- + -----------||
\ \/ h \/ h \d*l + 2*l*z d*l + 2*l*z//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
/ ___ _______ \
| / g / l / d*h d*l \|
cos|t* / - - / 1 + - *acos|----------- + -----------||
\ \/ h \/ h \d*l + 2*l*z d*l + 2*l*z//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
/ ___ _______ \ / _______ ___\
| / g / h + l / d*(h + l) \| | / h + l / d*(h + l) \ / g |
I*|t* / - - / ----- *acos|-----------|| I*| / ----- *acos|-----------| - t* / - |
\ \/ h \/ h \l*(d + 2*z)// \\/ h \l*(d + 2*z)/ \/ h /
e e
---------------------------------------------- + ----------------------------------------------
2 2
$$\frac{e^{i \left(- t \sqrt{\frac{g}{h}} + \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}\right)}}{2} + \frac{e^{i \left(t \sqrt{\frac{g}{h}} - \sqrt{\frac{h + l}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)}\right)}}{2}$$
exp(i*(t*sqrt(g/h) - sqrt((h + l)/h)*acos(d*(h + l)/(l*(d + 2*z)))))/2 + exp(i*(sqrt((h + l)/h)*acos(d*(h + l)/(l*(d + 2*z))) - t*sqrt(g/h)))/2
/ ___ ___ \
| ___ / 1 / 1 _______ / d*(h + l) \|
cos|t*\/ g * / - - / - *\/ l + h *acos|-----------||
\ \/ h \/ h \l*(2*z + d)//
$$\cos{\left(\sqrt{g} t \sqrt{\frac{1}{h}} - \sqrt{h + l} \sqrt{\frac{1}{h}} \operatorname{acos}{\left(\frac{d \left(h + l\right)}{l \left(d + 2 z\right)} \right)} \right)}$$
/ ___ \ / _______ \ / ___ \ / _______ \
| / g | | / l / d*h d*l \| | / g | | / l / d*h d*l \|
cos| / - *t|*cos| / 1 + - *acos|----------- + -----------|| + sin| / - *t|*sin| / 1 + - *acos|----------- + -----------||
\\/ h / \\/ h \d*l + 2*l*z d*l + 2*l*z// \\/ h / \\/ h \d*l + 2*l*z d*l + 2*l*z//
$$\sin{\left(t \sqrt{\frac{g}{h}} \right)} \sin{\left(\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)} + \cos{\left(t \sqrt{\frac{g}{h}} \right)} \cos{\left(\sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(sqrt(g/h)*t)*cos(sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z))) + sin(sqrt(g/h)*t)*sin(sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))
Rational denominator
[src]
/ ___ _______ \
| / g / l / d*h d*l \|
cos|t* / - - / 1 + - *acos|----------- + -----------||
\ \/ h \/ h \d*l + 2*l*z d*l + 2*l*z//
$$\cos{\left(t \sqrt{\frac{g}{h}} - \sqrt{1 + \frac{l}{h}} \operatorname{acos}{\left(\frac{d h}{d l + 2 l z} + \frac{d l}{d l + 2 l z} \right)} \right)}$$
cos(t*sqrt(g/h) - sqrt(1 + l/h)*acos(d*h/(d*l + 2*l*z) + d*l/(d*l + 2*l*z)))