Mister Exam

Factor polynomial x^3-24

An expression to simplify:

The solution

You have entered [src]
 3     
x  - 24
$$x^{3} - 24$$
x^3 - 24
Factorization [src]
/      3 ___\ /    3 ___      5/6\ /    3 ___      5/6\
\x - 2*\/ 3 /*\x + \/ 3  + I*3   /*\x + \/ 3  - I*3   /
$$\left(x - 2 \sqrt[3]{3}\right) \left(x + \left(\sqrt[3]{3} + 3^{\frac{5}{6}} i\right)\right) \left(x + \left(\sqrt[3]{3} - 3^{\frac{5}{6}} i\right)\right)$$
((x - 2*3^(1/3))*(x + 3^(1/3) + i*3^(5/6)))*(x + 3^(1/3) - i*3^(5/6))
Numerical answer [src]
-24.0 + x^3
-24.0 + x^3