Mister Exam

Other calculators

How do you -2s-(s^2+s+1)*(2s^2+2s-2)/((-s*(s^2+2*s+2))) in partial fractions?

An expression to simplify:

The solution

You have entered [src]
       / 2        \ /   2          \
       \s  + s + 1/*\2*s  + 2*s - 2/
-2*s - -----------------------------
                / 2          \      
             -s*\s  + 2*s + 2/      
$$- 2 s - \frac{\left(\left(s^{2} + s\right) + 1\right) \left(\left(2 s^{2} + 2 s\right) - 2\right)}{- s \left(\left(s^{2} + 2 s\right) + 2\right)}$$
-2*s - (s^2 + s + 1)*(2*s^2 + 2*s - 2)/((-s)*(s^2 + 2*s + 2))
Fraction decomposition [src]
-1/s - (-2 + s)/(2 + s^2 + 2*s)
$$- \frac{s - 2}{s^{2} + 2 s + 2} - \frac{1}{s}$$
  1      -2 + s   
- - - ------------
  s        2      
      2 + s  + 2*s
General simplification [src]
   /       2\   
  -\2 + 2*s /   
----------------
  /     2      \
s*\2 + s  + 2*s/
$$- \frac{2 s^{2} + 2}{s \left(s^{2} + 2 s + 2\right)}$$
-(2 + 2*s^2)/(s*(2 + s^2 + 2*s))
Numerical answer [src]
-2.0*s + (1.0 + s + s^2)*(-2.0 + 2.0*s + 2.0*s^2)/(s*(2.0 + s^2 + 2.0*s))
-2.0*s + (1.0 + s + s^2)*(-2.0 + 2.0*s + 2.0*s^2)/(s*(2.0 + s^2 + 2.0*s))
Combining rational expressions [src]
  /                                    2                \
2*\(1 + s*(1 + s))*(-1 + s*(1 + s)) - s *(2 + s*(2 + s))/
---------------------------------------------------------
                    s*(2 + s*(2 + s))                    
$$\frac{2 \left(- s^{2} \left(s \left(s + 2\right) + 2\right) + \left(s \left(s + 1\right) - 1\right) \left(s \left(s + 1\right) + 1\right)\right)}{s \left(s \left(s + 2\right) + 2\right)}$$
2*((1 + s*(1 + s))*(-1 + s*(1 + s)) - s^2*(2 + s*(2 + s)))/(s*(2 + s*(2 + s)))
Combinatorics [src]
     /     2\   
  -2*\1 + s /   
----------------
  /     2      \
s*\2 + s  + 2*s/
$$- \frac{2 \left(s^{2} + 1\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*(1 + s^2)/(s*(2 + s^2 + 2*s))
Powers [src]
       /         2\ /              2\
       \1 + s + s /*\-2 + 2*s + 2*s /
-2*s + ------------------------------
                /     2      \       
              s*\2 + s  + 2*s/       
$$- 2 s + \frac{\left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*s + (1 + s + s^2)*(-2 + 2*s + 2*s^2)/(s*(2 + s^2 + 2*s))
Assemble expression [src]
       /         2\ /              2\
       \1 + s + s /*\-2 + 2*s + 2*s /
-2*s + ------------------------------
                /     2      \       
              s*\2 + s  + 2*s/       
$$- 2 s + \frac{\left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*s + (1 + s + s^2)*(-2 + 2*s + 2*s^2)/(s*(2 + s^2 + 2*s))
Expand expression [src]
       / 2        \ /   2          \
       \s  + s + 1/*\2*s  + 2*s - 2/
-2*s + -----------------------------
                / 2          \      
              s*\s  + 2*s + 2/      
$$- 2 s + \frac{\left(\left(s^{2} + s\right) + 1\right) \left(\left(2 s^{2} + 2 s\right) - 2\right)}{s \left(\left(s^{2} + 2 s\right) + 2\right)}$$
-2*s + (s^2 + s + 1)*(2*s^2 + 2*s - 2)/(s*(s^2 + 2*s + 2))
Common denominator [src]
   /       2\  
  -\2 + 2*s /  
---------------
 3            2
s  + 2*s + 2*s 
$$- \frac{2 s^{2} + 2}{s^{3} + 2 s^{2} + 2 s}$$
-(2 + 2*s^2)/(s^3 + 2*s + 2*s^2)
Rational denominator [src]
/         2\ /              2\      2 /     2      \
\1 + s + s /*\-2 + 2*s + 2*s / - 2*s *\2 + s  + 2*s/
----------------------------------------------------
                    /     2      \                  
                  s*\2 + s  + 2*s/                  
$$\frac{- 2 s^{2} \left(s^{2} + 2 s + 2\right) + \left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
((1 + s + s^2)*(-2 + 2*s + 2*s^2) - 2*s^2*(2 + s^2 + 2*s))/(s*(2 + s^2 + 2*s))
Trigonometric part [src]
       /         2\ /              2\
       \1 + s + s /*\-2 + 2*s + 2*s /
-2*s + ------------------------------
                /     2      \       
              s*\2 + s  + 2*s/       
$$- 2 s + \frac{\left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*s + (1 + s + s^2)*(-2 + 2*s + 2*s^2)/(s*(2 + s^2 + 2*s))