Fraction decomposition
[src]
-1/s - (-2 + s)/(2 + s^2 + 2*s)
$$- \frac{s - 2}{s^{2} + 2 s + 2} - \frac{1}{s}$$
1 -2 + s
- - - ------------
s 2
2 + s + 2*s
General simplification
[src]
/ 2\
-\2 + 2*s /
----------------
/ 2 \
s*\2 + s + 2*s/
$$- \frac{2 s^{2} + 2}{s \left(s^{2} + 2 s + 2\right)}$$
-(2 + 2*s^2)/(s*(2 + s^2 + 2*s))
-2.0*s + (1.0 + s + s^2)*(-2.0 + 2.0*s + 2.0*s^2)/(s*(2.0 + s^2 + 2.0*s))
-2.0*s + (1.0 + s + s^2)*(-2.0 + 2.0*s + 2.0*s^2)/(s*(2.0 + s^2 + 2.0*s))
Combining rational expressions
[src]
/ 2 \
2*\(1 + s*(1 + s))*(-1 + s*(1 + s)) - s *(2 + s*(2 + s))/
---------------------------------------------------------
s*(2 + s*(2 + s))
$$\frac{2 \left(- s^{2} \left(s \left(s + 2\right) + 2\right) + \left(s \left(s + 1\right) - 1\right) \left(s \left(s + 1\right) + 1\right)\right)}{s \left(s \left(s + 2\right) + 2\right)}$$
2*((1 + s*(1 + s))*(-1 + s*(1 + s)) - s^2*(2 + s*(2 + s)))/(s*(2 + s*(2 + s)))
/ 2\
-2*\1 + s /
----------------
/ 2 \
s*\2 + s + 2*s/
$$- \frac{2 \left(s^{2} + 1\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*(1 + s^2)/(s*(2 + s^2 + 2*s))
/ 2\ / 2\
\1 + s + s /*\-2 + 2*s + 2*s /
-2*s + ------------------------------
/ 2 \
s*\2 + s + 2*s/
$$- 2 s + \frac{\left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*s + (1 + s + s^2)*(-2 + 2*s + 2*s^2)/(s*(2 + s^2 + 2*s))
Assemble expression
[src]
/ 2\ / 2\
\1 + s + s /*\-2 + 2*s + 2*s /
-2*s + ------------------------------
/ 2 \
s*\2 + s + 2*s/
$$- 2 s + \frac{\left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*s + (1 + s + s^2)*(-2 + 2*s + 2*s^2)/(s*(2 + s^2 + 2*s))
/ 2 \ / 2 \
\s + s + 1/*\2*s + 2*s - 2/
-2*s + -----------------------------
/ 2 \
s*\s + 2*s + 2/
$$- 2 s + \frac{\left(\left(s^{2} + s\right) + 1\right) \left(\left(2 s^{2} + 2 s\right) - 2\right)}{s \left(\left(s^{2} + 2 s\right) + 2\right)}$$
-2*s + (s^2 + s + 1)*(2*s^2 + 2*s - 2)/(s*(s^2 + 2*s + 2))
/ 2\
-\2 + 2*s /
---------------
3 2
s + 2*s + 2*s
$$- \frac{2 s^{2} + 2}{s^{3} + 2 s^{2} + 2 s}$$
-(2 + 2*s^2)/(s^3 + 2*s + 2*s^2)
Rational denominator
[src]
/ 2\ / 2\ 2 / 2 \
\1 + s + s /*\-2 + 2*s + 2*s / - 2*s *\2 + s + 2*s/
----------------------------------------------------
/ 2 \
s*\2 + s + 2*s/
$$\frac{- 2 s^{2} \left(s^{2} + 2 s + 2\right) + \left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
((1 + s + s^2)*(-2 + 2*s + 2*s^2) - 2*s^2*(2 + s^2 + 2*s))/(s*(2 + s^2 + 2*s))
/ 2\ / 2\
\1 + s + s /*\-2 + 2*s + 2*s /
-2*s + ------------------------------
/ 2 \
s*\2 + s + 2*s/
$$- 2 s + \frac{\left(s^{2} + s + 1\right) \left(2 s^{2} + 2 s - 2\right)}{s \left(s^{2} + 2 s + 2\right)}$$
-2*s + (1 + s + s^2)*(-2 + 2*s + 2*s^2)/(s*(2 + s^2 + 2*s))