Mister Exam

Other calculators:

Limit of the function y^2-x^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2    2\
 lim \y  - x /
x->0+         
$$\lim_{x \to 0^+}\left(- x^{2} + y^{2}\right)$$
Limit(y^2 - x^2, x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
One‐sided limits [src]
     / 2    2\
 lim \y  - x /
x->0+         
$$\lim_{x \to 0^+}\left(- x^{2} + y^{2}\right)$$
 2
y 
$$y^{2}$$
     / 2    2\
 lim \y  - x /
x->0-         
$$\lim_{x \to 0^-}\left(- x^{2} + y^{2}\right)$$
 2
y 
$$y^{2}$$
y^2
Rapid solution [src]
 2
y 
$$y^{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(- x^{2} + y^{2}\right) = y^{2}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- x^{2} + y^{2}\right) = y^{2}$$
$$\lim_{x \to \infty}\left(- x^{2} + y^{2}\right) = -\infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(- x^{2} + y^{2}\right) = y^{2} - 1$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- x^{2} + y^{2}\right) = y^{2} - 1$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- x^{2} + y^{2}\right) = -\infty$$
More at x→-oo