Mister Exam

Other calculators:


(x^2)^(1/3)

Limit of the function (x^2)^(1/3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
        ____
     3 /  2 
 lim \/  x  
x->oo       
$$\lim_{x \to \infty} \sqrt[3]{x^{2}}$$
Limit((x^2)^(1/3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty} \sqrt[3]{x^{2}} = \infty$$
$$\lim_{x \to 0^-} \sqrt[3]{x^{2}} = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+} \sqrt[3]{x^{2}} = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-} \sqrt[3]{x^{2}} = 1$$
More at x→1 from the left
$$\lim_{x \to 1^+} \sqrt[3]{x^{2}} = 1$$
More at x→1 from the right
$$\lim_{x \to -\infty} \sqrt[3]{x^{2}} = \infty$$
More at x→-oo
Rapid solution [src]
oo
$$\infty$$
The graph
Limit of the function (x^2)^(1/3)