Mister Exam

Other calculators:


(1-4*x)^(1/x)

Limit of the function (1-4*x)^(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x _________
 lim \/ 1 - 4*x 
x->0+           
$$\lim_{x \to 0^+} \left(1 - 4 x\right)^{\frac{1}{x}}$$
Limit((1 - 4*x)^(1/x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+} \left(1 - 4 x\right)^{\frac{1}{x}}$$
transform
do replacement
$$u = \frac{1}{\left(-4\right) x}$$
then
$$\lim_{x \to 0^+} \left(1 - \frac{4}{\frac{1}{x}}\right)^{\frac{1}{x}}$$ =
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- 4 u}$$
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{- 4 u}$$
=
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-4}$$
The limit
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{-4} = e^{-4}$$

The final answer:
$$\lim_{x \to 0^+} \left(1 - 4 x\right)^{\frac{1}{x}} = e^{-4}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
     x _________
 lim \/ 1 - 4*x 
x->0+           
$$\lim_{x \to 0^+} \left(1 - 4 x\right)^{\frac{1}{x}}$$
 -4
e  
$$e^{-4}$$
= 0.0183156388887342
     x _________
 lim \/ 1 - 4*x 
x->0-           
$$\lim_{x \to 0^-} \left(1 - 4 x\right)^{\frac{1}{x}}$$
 -4
e  
$$e^{-4}$$
= 0.0183156388887342
= 0.0183156388887342
Rapid solution [src]
 -4
e  
$$e^{-4}$$
Numerical answer [src]
0.0183156388887342
0.0183156388887342
The graph
Limit of the function (1-4*x)^(1/x)