Mister Exam

Other calculators


(x^2)^(1/3)

Derivative of (x^2)^(1/3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ____
3 /  2 
\/  x  
$$\sqrt[3]{x^{2}}$$
(x^2)^(1/3)
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. Apply the power rule: goes to

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
     2/3
2*|x|   
--------
  3*x   
$$\frac{2 \left|{x}\right|^{\frac{2}{3}}}{3 x}$$
The second derivative [src]
  /       2/3            \
  |  3*|x|      2*sign(x)|
2*|- -------- + ---------|
  |     x        3 _____ |
  \              \/ |x|  /
--------------------------
           9*x            
$$\frac{2 \left(\frac{2 \operatorname{sign}{\left(x \right)}}{\sqrt[3]{\left|{x}\right|}} - \frac{3 \left|{x}\right|^{\frac{2}{3}}}{x}\right)}{9 x}$$
The third derivative [src]
  /      2                             2/3            \
  |  sign (x)   6*DiracDelta(x)   9*|x|      6*sign(x)|
4*|- -------- + --------------- + -------- - ---------|
  |      4/3        3 _____           2        3 _____|
  \   |x|           \/ |x|           x       x*\/ |x| /
-------------------------------------------------------
                          27*x                         
$$\frac{4 \left(\frac{6 \delta\left(x\right)}{\sqrt[3]{\left|{x}\right|}} - \frac{\operatorname{sign}^{2}{\left(x \right)}}{\left|{x}\right|^{\frac{4}{3}}} - \frac{6 \operatorname{sign}{\left(x \right)}}{x \sqrt[3]{\left|{x}\right|}} + \frac{9 \left|{x}\right|^{\frac{2}{3}}}{x^{2}}\right)}{27 x}$$
The graph
Derivative of (x^2)^(1/3)