Mister Exam

Other calculators:


(1+3*x)^(5/x)

Limit of the function (1+3*x)^(5/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
              5
              -
              x
 lim (1 + 3*x) 
x->0+          
limx0+(3x+1)5x\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}}
Limit((1 + 3*x)^(5/x), x, 0)
Detail solution
Let's take the limit
limx0+(3x+1)5x\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}}
transform
do replacement
u=13xu = \frac{1}{3 x}
then
limx0+(1+31x)5x\lim_{x \to 0^+} \left(1 + \frac{3}{\frac{1}{x}}\right)^{\frac{5}{x}} =
=
limu0+(1+1u)15u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{15 u}
=
limu0+(1+1u)15u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{15 u}
=
((limu0+(1+1u)u))15\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{15}
The limit
limu0+(1+1u)u\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}
is second remarkable limit, is equal to e ~ 2.718281828459045
then
((limu0+(1+1u)u))15=e15\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{15} = e^{15}

The final answer:
limx0+(3x+1)5x=e15\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}} = e^{15}
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-10100200000000000000000
One‐sided limits [src]
              5
              -
              x
 lim (1 + 3*x) 
x->0+          
limx0+(3x+1)5x\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}}
 15
e  
e15e^{15}
= 3269017.37247211
              5
              -
              x
 lim (1 + 3*x) 
x->0-          
limx0(3x+1)5x\lim_{x \to 0^-} \left(3 x + 1\right)^{\frac{5}{x}}
 15
e  
e15e^{15}
exp(15)
Rapid solution [src]
 15
e  
e15e^{15}
Other limits x→0, -oo, +oo, 1
limx0(3x+1)5x=e15\lim_{x \to 0^-} \left(3 x + 1\right)^{\frac{5}{x}} = e^{15}
More at x→0 from the left
limx0+(3x+1)5x=e15\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}} = e^{15}
limx(3x+1)5x=1\lim_{x \to \infty} \left(3 x + 1\right)^{\frac{5}{x}} = 1
More at x→oo
limx1(3x+1)5x=1024\lim_{x \to 1^-} \left(3 x + 1\right)^{\frac{5}{x}} = 1024
More at x→1 from the left
limx1+(3x+1)5x=1024\lim_{x \to 1^+} \left(3 x + 1\right)^{\frac{5}{x}} = 1024
More at x→1 from the right
limx(3x+1)5x=1\lim_{x \to -\infty} \left(3 x + 1\right)^{\frac{5}{x}} = 1
More at x→-oo
Numerical answer [src]
3269017.37247211
3269017.37247211
The graph
Limit of the function (1+3*x)^(5/x)