Mister Exam

Other calculators:


(1+3*x)^(5/x)

Limit of the function (1+3*x)^(5/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
              5
              -
              x
 lim (1 + 3*x) 
x->0+          
$$\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}}$$
Limit((1 + 3*x)^(5/x), x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}}$$
transform
do replacement
$$u = \frac{1}{3 x}$$
then
$$\lim_{x \to 0^+} \left(1 + \frac{3}{\frac{1}{x}}\right)^{\frac{5}{x}}$$ =
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{15 u}$$
=
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{15 u}$$
=
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{15}$$
The limit
$$\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}$$
is second remarkable limit, is equal to e ~ 2.718281828459045
then
$$\left(\left(\lim_{u \to 0^+} \left(1 + \frac{1}{u}\right)^{u}\right)\right)^{15} = e^{15}$$

The final answer:
$$\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}} = e^{15}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
One‐sided limits [src]
              5
              -
              x
 lim (1 + 3*x) 
x->0+          
$$\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}}$$
 15
e  
$$e^{15}$$
= 3269017.37247211
              5
              -
              x
 lim (1 + 3*x) 
x->0-          
$$\lim_{x \to 0^-} \left(3 x + 1\right)^{\frac{5}{x}}$$
 15
e  
$$e^{15}$$
exp(15)
Rapid solution [src]
 15
e  
$$e^{15}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-} \left(3 x + 1\right)^{\frac{5}{x}} = e^{15}$$
More at x→0 from the left
$$\lim_{x \to 0^+} \left(3 x + 1\right)^{\frac{5}{x}} = e^{15}$$
$$\lim_{x \to \infty} \left(3 x + 1\right)^{\frac{5}{x}} = 1$$
More at x→oo
$$\lim_{x \to 1^-} \left(3 x + 1\right)^{\frac{5}{x}} = 1024$$
More at x→1 from the left
$$\lim_{x \to 1^+} \left(3 x + 1\right)^{\frac{5}{x}} = 1024$$
More at x→1 from the right
$$\lim_{x \to -\infty} \left(3 x + 1\right)^{\frac{5}{x}} = 1$$
More at x→-oo
Numerical answer [src]
3269017.37247211
3269017.37247211
The graph
Limit of the function (1+3*x)^(5/x)