Mister Exam

Other calculators:


(x^2-5*x)/x

Limit of the function (x^2-5*x)/x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 2      \
     |x  - 5*x|
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{x^{2} - 5 x}{x}\right)$$
Limit((x^2 - 5*x)/x, x, 0)
Detail solution
Let's take the limit
$$\lim_{x \to 0^+}\left(\frac{x^{2} - 5 x}{x}\right)$$
transform
$$\lim_{x \to 0^+}\left(\frac{x^{2} - 5 x}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(\frac{x \left(x - 5\right)}{x}\right)$$
=
$$\lim_{x \to 0^+}\left(x - 5\right) = $$
$$-5 = $$
= -5

The final answer:
$$\lim_{x \to 0^+}\left(\frac{x^{2} - 5 x}{x}\right) = -5$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
-5
$$-5$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 0^-}\left(\frac{x^{2} - 5 x}{x}\right) = -5$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2} - 5 x}{x}\right) = -5$$
$$\lim_{x \to \infty}\left(\frac{x^{2} - 5 x}{x}\right) = \infty$$
More at x→oo
$$\lim_{x \to 1^-}\left(\frac{x^{2} - 5 x}{x}\right) = -4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2} - 5 x}{x}\right) = -4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x^{2} - 5 x}{x}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     / 2      \
     |x  - 5*x|
 lim |--------|
x->0+\   x    /
$$\lim_{x \to 0^+}\left(\frac{x^{2} - 5 x}{x}\right)$$
-5
$$-5$$
= -5.0
     / 2      \
     |x  - 5*x|
 lim |--------|
x->0-\   x    /
$$\lim_{x \to 0^-}\left(\frac{x^{2} - 5 x}{x}\right)$$
-5
$$-5$$
= -5.0
= -5.0
Numerical answer [src]
-5.0
-5.0
The graph
Limit of the function (x^2-5*x)/x