Mister Exam

Other calculators:


2^(-n)*2^(1+n)

Limit of the function 2^(-n)*2^(1+n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / -n  1 + n\
 lim \2  *2     /
n->oo            
$$\lim_{n \to \infty}\left(2^{- n} 2^{n + 1}\right)$$
Limit(2^(-n)*2^(1 + n), n, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{n \to \infty}\left(2 \cdot 2^{n}\right) = \infty$$
and limit for the denominator is
$$\lim_{n \to \infty} 2^{n} = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{n \to \infty}\left(2^{- n} 2^{n + 1}\right)$$
=
$$\lim_{n \to \infty}\left(\frac{\frac{d}{d n} 2 \cdot 2^{n}}{\frac{d}{d n} 2^{n}}\right)$$
=
$$\lim_{n \to \infty} 2$$
=
$$\lim_{n \to \infty} 2$$
=
$$2$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(2^{- n} 2^{n + 1}\right) = 2$$
$$\lim_{n \to 0^-}\left(2^{- n} 2^{n + 1}\right) = 2$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(2^{- n} 2^{n + 1}\right) = 2$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(2^{- n} 2^{n + 1}\right) = 2$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(2^{- n} 2^{n + 1}\right) = 2$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(2^{- n} 2^{n + 1}\right) = 2$$
More at n→-oo
Rapid solution [src]
2
$$2$$
The graph
Limit of the function 2^(-n)*2^(1+n)