We have indeterminateness of type
0/0,
i.e. limit for the numerator is
$$\lim_{x \to 2^+}\left(x^{2} + 2 x - 8\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 2^+}\left(8 - x^{3}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 2^+}\left(\frac{x^{2} + 2 x - 8}{8 - x^{3}}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{\frac{d}{d x} \left(x^{2} + 2 x - 8\right)}{\frac{d}{d x} \left(8 - x^{3}\right)}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{2 x + 2}{3 x^{2}}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x}{6} - \frac{1}{6}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x}{6} - \frac{1}{6}\right)$$
=
$$- \frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)