Mister Exam

Other calculators:


(-8+x^2+2*x)/(8-x^3)

Limit of the function (-8+x^2+2*x)/(8-x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /      2      \
     |-8 + x  + 2*x|
 lim |-------------|
x->2+|         3   |
     \    8 - x    /
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
Limit((-8 + x^2 + 2*x)/(8 - x^3), x, 2)
Detail solution
Let's take the limit
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
transform
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{\left(x - 2\right) \left(x + 4\right)}{\left(-1\right) \left(x - 2\right) \left(x^{2} + 2 x + 4\right)}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x + 4}{x^{2} + 2 x + 4}\right) = $$
$$- \frac{2 + 4}{4 + 2^{2} + 2 \cdot 2} = $$
= -1/2

The final answer:
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = - \frac{1}{2}$$
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
$$\lim_{x \to 2^+}\left(x^{2} + 2 x - 8\right) = 0$$
and limit for the denominator is
$$\lim_{x \to 2^+}\left(8 - x^{3}\right) = 0$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
=
Let's transform the function under the limit a few
$$\lim_{x \to 2^+}\left(\frac{x^{2} + 2 x - 8}{8 - x^{3}}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{\frac{d}{d x} \left(x^{2} + 2 x - 8\right)}{\frac{d}{d x} \left(8 - x^{3}\right)}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{2 x + 2}{3 x^{2}}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x}{6} - \frac{1}{6}\right)$$
=
$$\lim_{x \to 2^+}\left(- \frac{x}{6} - \frac{1}{6}\right)$$
=
$$- \frac{1}{2}$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
-1/2
$$- \frac{1}{2}$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = - \frac{1}{2}$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = - \frac{1}{2}$$
$$\lim_{x \to \infty}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = -1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = -1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = - \frac{5}{7}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = - \frac{5}{7}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right) = 0$$
More at x→-oo
One‐sided limits [src]
     /      2      \
     |-8 + x  + 2*x|
 lim |-------------|
x->2+|         3   |
     \    8 - x    /
$$\lim_{x \to 2^+}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
-1/2
$$- \frac{1}{2}$$
= -0.5
     /      2      \
     |-8 + x  + 2*x|
 lim |-------------|
x->2-|         3   |
     \    8 - x    /
$$\lim_{x \to 2^-}\left(\frac{2 x + \left(x^{2} - 8\right)}{8 - x^{3}}\right)$$
-1/2
$$- \frac{1}{2}$$
= -0.5
= -0.5
Numerical answer [src]
-0.5
-0.5
The graph
Limit of the function (-8+x^2+2*x)/(8-x^3)