Mister Exam

Other calculators:


x^2/(1+x^3)

Limit of the function x^2/(1+x^3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   2  \
      |  x   |
 lim  |------|
x->-oo|     3|
      \1 + x /
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{x^{3} + 1}\right)$$
Limit(x^2/(1 + x^3), x, -oo)
Detail solution
Let's take the limit
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{x^{3} + 1}\right)$$
Let's divide numerator and denominator by x^3:
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{x^{3} + 1}\right)$$ =
$$\lim_{x \to -\infty}\left(\frac{1}{x \left(1 + \frac{1}{x^{3}}\right)}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to -\infty}\left(\frac{1}{x \left(1 + \frac{1}{x^{3}}\right)}\right) = \lim_{u \to 0^+}\left(\frac{u}{u^{3} + 1}\right)$$
=
$$\frac{0}{0^{3} + 1} = 0$$

The final answer:
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{x^{3} + 1}\right) = 0$$
Lopital's rule
We have indeterminateness of type
oo/-oo,

i.e. limit for the numerator is
$$\lim_{x \to -\infty} x^{2} = \infty$$
and limit for the denominator is
$$\lim_{x \to -\infty}\left(x^{3} + 1\right) = -\infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{x^{3} + 1}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{\frac{d}{d x} x^{2}}{\frac{d}{d x} \left(x^{3} + 1\right)}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{2}{3 x}\right)$$
=
$$\lim_{x \to -\infty}\left(\frac{2}{3 x}\right)$$
=
$$0$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{x^{2}}{x^{3} + 1}\right) = 0$$
$$\lim_{x \to \infty}\left(\frac{x^{2}}{x^{3} + 1}\right) = 0$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x^{2}}{x^{3} + 1}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x^{2}}{x^{3} + 1}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x^{2}}{x^{3} + 1}\right) = \frac{1}{2}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x^{2}}{x^{3} + 1}\right) = \frac{1}{2}$$
More at x→1 from the right
The graph
Limit of the function x^2/(1+x^3)