Mister Exam

Other calculators

Derivative of x^2/(1+x^3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2  
  x   
------
     3
1 + x 
$$\frac{x^{2}}{x^{3} + 1}$$
x^2/(1 + x^3)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Apply the power rule: goes to

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
        4           
     3*x       2*x  
- --------- + ------
          2        3
  /     3\    1 + x 
  \1 + x /          
$$- \frac{3 x^{4}}{\left(x^{3} + 1\right)^{2}} + \frac{2 x}{x^{3} + 1}$$
The second derivative [src]
  /                  /         3 \\
  |                3 |      3*x  ||
  |             3*x *|-1 + ------||
  |        3         |          3||
  |     6*x          \     1 + x /|
2*|1 - ------ + ------------------|
  |         3              3      |
  \    1 + x          1 + x       /
-----------------------------------
                    3              
               1 + x               
$$\frac{2 \left(\frac{3 x^{3} \left(\frac{3 x^{3}}{x^{3} + 1} - 1\right)}{x^{3} + 1} - \frac{6 x^{3}}{x^{3} + 1} + 1\right)}{x^{3} + 1}$$
3-я производная [src]
     /            6         3 \
   2 |        27*x      36*x  |
6*x *|-10 - --------- + ------|
     |              2        3|
     |      /     3\    1 + x |
     \      \1 + x /          /
-------------------------------
                   2           
           /     3\            
           \1 + x /            
$$\frac{6 x^{2} \left(- \frac{27 x^{6}}{\left(x^{3} + 1\right)^{2}} + \frac{36 x^{3}}{x^{3} + 1} - 10\right)}{\left(x^{3} + 1\right)^{2}}$$
The third derivative [src]
     /            6         3 \
   2 |        27*x      36*x  |
6*x *|-10 - --------- + ------|
     |              2        3|
     |      /     3\    1 + x |
     \      \1 + x /          /
-------------------------------
                   2           
           /     3\            
           \1 + x /            
$$\frac{6 x^{2} \left(- \frac{27 x^{6}}{\left(x^{3} + 1\right)^{2}} + \frac{36 x^{3}}{x^{3} + 1} - 10\right)}{\left(x^{3} + 1\right)^{2}}$$