Mister Exam

Other calculators:


x^3+3*x

Limit of the function x^3+3*x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3      \
 lim \x  + 3*x/
x->2+          
limx2+(x3+3x)\lim_{x \to 2^+}\left(x^{3} + 3 x\right)
Limit(x^3 + 3*x, x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.0-200200
One‐sided limits [src]
     / 3      \
 lim \x  + 3*x/
x->2+          
limx2+(x3+3x)\lim_{x \to 2^+}\left(x^{3} + 3 x\right)
14
1414
= 14.0
     / 3      \
 lim \x  + 3*x/
x->2-          
limx2(x3+3x)\lim_{x \to 2^-}\left(x^{3} + 3 x\right)
14
1414
= 14.0
= 14.0
Rapid solution [src]
14
1414
Other limits x→0, -oo, +oo, 1
limx2(x3+3x)=14\lim_{x \to 2^-}\left(x^{3} + 3 x\right) = 14
More at x→2 from the left
limx2+(x3+3x)=14\lim_{x \to 2^+}\left(x^{3} + 3 x\right) = 14
limx(x3+3x)=\lim_{x \to \infty}\left(x^{3} + 3 x\right) = \infty
More at x→oo
limx0(x3+3x)=0\lim_{x \to 0^-}\left(x^{3} + 3 x\right) = 0
More at x→0 from the left
limx0+(x3+3x)=0\lim_{x \to 0^+}\left(x^{3} + 3 x\right) = 0
More at x→0 from the right
limx1(x3+3x)=4\lim_{x \to 1^-}\left(x^{3} + 3 x\right) = 4
More at x→1 from the left
limx1+(x3+3x)=4\lim_{x \to 1^+}\left(x^{3} + 3 x\right) = 4
More at x→1 from the right
limx(x3+3x)=\lim_{x \to -\infty}\left(x^{3} + 3 x\right) = -\infty
More at x→-oo
Numerical answer [src]
14.0
14.0
The graph
Limit of the function x^3+3*x