Mister Exam

Other calculators:


x^3*sin(1/x)

Limit of the function x^3*sin(1/x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / 3    /1\\
 lim |x *sin|-||
x->0+\      \x//
limx0+(x3sin(1x))\lim_{x \to 0^+}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right)
Limit(x^3*sin(1/x), x, 0)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010200-100
Other limits x→0, -oo, +oo, 1
limx0(x3sin(1x))=0\lim_{x \to 0^-}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right) = 0
More at x→0 from the left
limx0+(x3sin(1x))=0\lim_{x \to 0^+}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right) = 0
limx(x3sin(1x))=\lim_{x \to \infty}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right) = \infty
More at x→oo
limx1(x3sin(1x))=sin(1)\lim_{x \to 1^-}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right) = \sin{\left(1 \right)}
More at x→1 from the left
limx1+(x3sin(1x))=sin(1)\lim_{x \to 1^+}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right) = \sin{\left(1 \right)}
More at x→1 from the right
limx(x3sin(1x))=\lim_{x \to -\infty}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right) = \infty
More at x→-oo
Rapid solution [src]
0
00
One‐sided limits [src]
     / 3    /1\\
 lim |x *sin|-||
x->0+\      \x//
limx0+(x3sin(1x))\lim_{x \to 0^+}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right)
0
00
= -1.57993404767779e-19
     / 3    /1\\
 lim |x *sin|-||
x->0-\      \x//
limx0(x3sin(1x))\lim_{x \to 0^-}\left(x^{3} \sin{\left(\frac{1}{x} \right)}\right)
0
00
= -1.57993404767779e-19
= -1.57993404767779e-19
Numerical answer [src]
-1.57993404767779e-19
-1.57993404767779e-19
The graph
Limit of the function x^3*sin(1/x)