3 / 1\
x *sin|1*-|
\ x/
d / 3 / 1\\ --|x *sin|1*-|| dx\ \ x//
Apply the product rule:
; to find :
Apply the power rule: goes to
; to find :
Let .
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by :
Apply the quotient rule, which is:
and .
To find :
The derivative of the constant is zero.
To find :
Apply the power rule: goes to
Now plug in to the quotient rule:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
/ 1\ 2 / 1\
- x*cos|1*-| + 3*x *sin|1*-|
\ x/ \ x/
/1\
sin|-|
/1\ \x/ /1\
- 4*cos|-| - ------ + 6*x*sin|-|
\x/ x \x/
/1\ /1\
cos|-| 6*sin|-| / /1\\
/1\ \x/ \x/ | sin|-||
- 6*cos|-| + ------ + -------- /1\ | /1\ \x/|
\x/ 2 x 18*cos|-| 9*|2*cos|-| - ------|
/1\ x \x/ \ \x/ x /
6*sin|-| + ------------------------------ - --------- + ---------------------
\x/ x x x