Mister Exam

Other calculators:


(3+5*x)/(1+x)

Limit of the function (3+5*x)/(1+x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /3 + 5*x\
 lim |-------|
x->oo\ 1 + x /
$$\lim_{x \to \infty}\left(\frac{5 x + 3}{x + 1}\right)$$
Limit((3 + 5*x)/(1 + x), x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{5 x + 3}{x + 1}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{5 x + 3}{x + 1}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{5 + \frac{3}{x}}{1 + \frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{5 + \frac{3}{x}}{1 + \frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{3 u + 5}{u + 1}\right)$$
=
$$\frac{0 \cdot 3 + 5}{1} = 5$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{5 x + 3}{x + 1}\right) = 5$$
Lopital's rule
We have indeterminateness of type
oo/oo,

i.e. limit for the numerator is
$$\lim_{x \to \infty}\left(5 x + 3\right) = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty}\left(x + 1\right) = \infty$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{5 x + 3}{x + 1}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} \left(5 x + 3\right)}{\frac{d}{d x} \left(x + 1\right)}\right)$$
=
$$\lim_{x \to \infty} 5$$
=
$$\lim_{x \to \infty} 5$$
=
$$5$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Rapid solution [src]
5
$$5$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{5 x + 3}{x + 1}\right) = 5$$
$$\lim_{x \to 0^-}\left(\frac{5 x + 3}{x + 1}\right) = 3$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{5 x + 3}{x + 1}\right) = 3$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{5 x + 3}{x + 1}\right) = 4$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{5 x + 3}{x + 1}\right) = 4$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{5 x + 3}{x + 1}\right) = 5$$
More at x→-oo
The graph
Limit of the function (3+5*x)/(1+x)