Mister Exam

Other calculators:

Limit of the function x^n/factorial(n)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / n\
     |x |
 lim |--|
n->oo\n!/
$$\lim_{n \to \infty}\left(\frac{x^{n}}{n!}\right)$$
Limit(x^n/factorial(n), n, oo, dir='-')
Other limits n→0, -oo, +oo, 1
$$\lim_{n \to \infty}\left(\frac{x^{n}}{n!}\right) = 0$$
$$\lim_{n \to 0^-}\left(\frac{x^{n}}{n!}\right) = 1$$
More at n→0 from the left
$$\lim_{n \to 0^+}\left(\frac{x^{n}}{n!}\right) = 1$$
More at n→0 from the right
$$\lim_{n \to 1^-}\left(\frac{x^{n}}{n!}\right) = x$$
More at n→1 from the left
$$\lim_{n \to 1^+}\left(\frac{x^{n}}{n!}\right) = x$$
More at n→1 from the right
$$\lim_{n \to -\infty}\left(\frac{x^{n}}{n!}\right)$$
More at n→-oo
Rapid solution [src]
0
$$0$$