Mister Exam

Other calculators

Sum of series x^n/factorial(n)



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \     n
  \   x 
  /   --
 /    n!
/___,   
n = 1   
$$\sum_{n=1}^{\infty} \frac{x^{n}}{n!}$$
Sum(x^n/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{x^{n}}{n!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n!}$$
and
$$x_{0} = 0$$
,
$$d = 1$$
,
$$c = 1$$
then
$$R = \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{n!}}\right|$$
Let's take the limit
we find
$$R = \infty$$
The answer [src]
  /       x\
  |  1   e |
x*|- - + --|
  \  x   x /
$$x \left(\frac{e^{x}}{x} - \frac{1}{x}\right)$$
x*(-1/x + exp(x)/x)

    Examples of finding the sum of a series