$$\lim_{x \to \infty}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 0$$
$$\lim_{x \to 0^-}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 1 - \left(-1\right)^{\frac{2}{3}}$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 1 - \left(-1\right)^{\frac{2}{3}}$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 2^{\frac{2}{3}}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 2^{\frac{2}{3}}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 0$$
More at x→-oo