Mister Exam

Other calculators:


(1+x)^(2/3)-(-1+x)^(2/3)

Limit of the function (1+x)^(2/3)-(-1+x)^(2/3)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /       2/3           2/3\
 lim \(1 + x)    - (-1 + x)   /
x->oo                          
$$\lim_{x \to \infty}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right)$$
Limit((1 + x)^(2/3) - (-1 + x)^(2/3), x, oo, dir='-')
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
0
$$0$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 0$$
$$\lim_{x \to 0^-}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 1 - \left(-1\right)^{\frac{2}{3}}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 1 - \left(-1\right)^{\frac{2}{3}}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 2^{\frac{2}{3}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 2^{\frac{2}{3}}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(- \left(x - 1\right)^{\frac{2}{3}} + \left(x + 1\right)^{\frac{2}{3}}\right) = 0$$
More at x→-oo
The graph
Limit of the function (1+x)^(2/3)-(-1+x)^(2/3)