Mister Exam

Other calculators:


1/3+x/3

Limit of the function 1/3+x/3

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /1   x\
 lim |- + -|
x->oo\3   3/
$$\lim_{x \to \infty}\left(\frac{x}{3} + \frac{1}{3}\right)$$
Limit(1/3 + x/3, x, oo, dir='-')
Detail solution
Let's take the limit
$$\lim_{x \to \infty}\left(\frac{x}{3} + \frac{1}{3}\right)$$
Let's divide numerator and denominator by x:
$$\lim_{x \to \infty}\left(\frac{x}{3} + \frac{1}{3}\right)$$ =
$$\lim_{x \to \infty}\left(\frac{\frac{1}{3} + \frac{1}{3 x}}{\frac{1}{x}}\right)$$
Do Replacement
$$u = \frac{1}{x}$$
then
$$\lim_{x \to \infty}\left(\frac{\frac{1}{3} + \frac{1}{3 x}}{\frac{1}{x}}\right) = \lim_{u \to 0^+}\left(\frac{\frac{u}{3} + \frac{1}{3}}{u}\right)$$
=
$$\frac{\frac{0}{3} + \frac{1}{3}}{0} = \infty$$

The final answer:
$$\lim_{x \to \infty}\left(\frac{x}{3} + \frac{1}{3}\right) = \infty$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
oo
$$\infty$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{3} + \frac{1}{3}\right) = \infty$$
$$\lim_{x \to 0^-}\left(\frac{x}{3} + \frac{1}{3}\right) = \frac{1}{3}$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{3} + \frac{1}{3}\right) = \frac{1}{3}$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{3} + \frac{1}{3}\right) = \frac{2}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{3} + \frac{1}{3}\right) = \frac{2}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{3} + \frac{1}{3}\right) = -\infty$$
More at x→-oo
The graph
Limit of the function 1/3+x/3