$$\lim_{x \to \infty}\left(x + 2 \operatorname{acot}{\left(x \right)}\right) = \infty$$
$$\lim_{x \to 0^-}\left(x + 2 \operatorname{acot}{\left(x \right)}\right) = - \pi$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(x + 2 \operatorname{acot}{\left(x \right)}\right) = \pi$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(x + 2 \operatorname{acot}{\left(x \right)}\right) = 1 + \frac{\pi}{2}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(x + 2 \operatorname{acot}{\left(x \right)}\right) = 1 + \frac{\pi}{2}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(x + 2 \operatorname{acot}{\left(x \right)}\right) = -\infty$$
More at x→-oo