Mister Exam

Other calculators:

Limit of the function x*a^x

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   x\
 lim \x*a /
x->oo      
limx(axx)\lim_{x \to \infty}\left(a^{x} x\right)
Limit(x*a^x, x, oo, dir='-')
Rapid solution [src]
None
None
Other limits x→0, -oo, +oo, 1
limx(axx)\lim_{x \to \infty}\left(a^{x} x\right)
limx0(axx)=0\lim_{x \to 0^-}\left(a^{x} x\right) = 0
More at x→0 from the left
limx0+(axx)=0\lim_{x \to 0^+}\left(a^{x} x\right) = 0
More at x→0 from the right
limx1(axx)=a\lim_{x \to 1^-}\left(a^{x} x\right) = a
More at x→1 from the left
limx1+(axx)=a\lim_{x \to 1^+}\left(a^{x} x\right) = a
More at x→1 from the right
limx(axx)\lim_{x \to -\infty}\left(a^{x} x\right)
More at x→-oo