Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of n*(1+(1+n)^2)/((1+n)*(1+n^2))
Limit of -2+|-2+x|/x
Limit of (1+x^2+9*x)/(-5+2*x+7*x^2)
Limit of (-9+x^2)/(-3-8*x+3*x^2)
Sum of series
:
x*a^x
Derivative of
:
x*a^x
Identical expressions
x*a^x
x multiply by a to the power of x
x*ax
xa^x
xax
Limit of the function
/
x*a^x
Limit of the function x*a^x
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x\ lim \x*a / x->oo
lim
x
→
∞
(
a
x
x
)
\lim_{x \to \infty}\left(a^{x} x\right)
x
→
∞
lim
(
a
x
x
)
Limit(x*a^x, x, oo, dir='-')
Rapid solution
[src]
None
None
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
∞
(
a
x
x
)
\lim_{x \to \infty}\left(a^{x} x\right)
x
→
∞
lim
(
a
x
x
)
lim
x
→
0
−
(
a
x
x
)
=
0
\lim_{x \to 0^-}\left(a^{x} x\right) = 0
x
→
0
−
lim
(
a
x
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
a
x
x
)
=
0
\lim_{x \to 0^+}\left(a^{x} x\right) = 0
x
→
0
+
lim
(
a
x
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
a
x
x
)
=
a
\lim_{x \to 1^-}\left(a^{x} x\right) = a
x
→
1
−
lim
(
a
x
x
)
=
a
More at x→1 from the left
lim
x
→
1
+
(
a
x
x
)
=
a
\lim_{x \to 1^+}\left(a^{x} x\right) = a
x
→
1
+
lim
(
a
x
x
)
=
a
More at x→1 from the right
lim
x
→
−
∞
(
a
x
x
)
\lim_{x \to -\infty}\left(a^{x} x\right)
x
→
−
∞
lim
(
a
x
x
)
More at x→-oo