x x*a
x*a^x
Apply the product rule:
f(x)=xf{\left(x \right)} = xf(x)=x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}dxdf(x):
Apply the power rule: xxx goes to 111
g(x)=axg{\left(x \right)} = a^{x}g(x)=ax; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}dxdg(x):
∂∂xax=axlog(a)\frac{\partial}{\partial x} a^{x} = a^{x} \log{\left(a \right)}∂x∂ax=axlog(a)
The result is: axxlog(a)+axa^{x} x \log{\left(a \right)} + a^{x}axxlog(a)+ax
Now simplify:
The answer is:
x x a + x*a *log(a)
x a *(2 + x*log(a))*log(a)
x 2 a *log (a)*(3 + x*log(a))