Mister Exam

Derivative of x*a^x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   x
x*a 
axxa^{x} x
x*a^x
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=xf{\left(x \right)} = x; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    g(x)=axg{\left(x \right)} = a^{x}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. xax=axlog(a)\frac{\partial}{\partial x} a^{x} = a^{x} \log{\left(a \right)}

    The result is: axxlog(a)+axa^{x} x \log{\left(a \right)} + a^{x}

  2. Now simplify:

    ax(xlog(a)+1)a^{x} \left(x \log{\left(a \right)} + 1\right)


The answer is:

ax(xlog(a)+1)a^{x} \left(x \log{\left(a \right)} + 1\right)

The first derivative [src]
 x      x       
a  + x*a *log(a)
axxlog(a)+axa^{x} x \log{\left(a \right)} + a^{x}
The second derivative [src]
 x                      
a *(2 + x*log(a))*log(a)
ax(xlog(a)+2)log(a)a^{x} \left(x \log{\left(a \right)} + 2\right) \log{\left(a \right)}
The third derivative [src]
 x    2                  
a *log (a)*(3 + x*log(a))
ax(xlog(a)+3)log(a)2a^{x} \left(x \log{\left(a \right)} + 3\right) \log{\left(a \right)}^{2}