Mister Exam

Other calculators:


x/2

Limit of the function x/2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x\
 lim |-|
x->oo\2/
limx(x2)\lim_{x \to \infty}\left(\frac{x}{2}\right)
Limit(x/2, x, oo, dir='-')
Detail solution
Let's take the limit
limx(x2)\lim_{x \to \infty}\left(\frac{x}{2}\right)
Let's divide numerator and denominator by x:
limx(x2)\lim_{x \to \infty}\left(\frac{x}{2}\right) =
limx121x\lim_{x \to \infty} \frac{1}{2 \cdot \frac{1}{x}}
Do Replacement
u=1xu = \frac{1}{x}
then
limx121x=limu0+(12u)\lim_{x \to \infty} \frac{1}{2 \cdot \frac{1}{x}} = \lim_{u \to 0^+}\left(\frac{1}{2 u}\right)
=
102=\frac{1}{0 \cdot 2} = \infty

The final answer:
limx(x2)=\lim_{x \to \infty}\left(\frac{x}{2}\right) = \infty
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
02468-8-6-4-2-1010-1010
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx(x2)=\lim_{x \to \infty}\left(\frac{x}{2}\right) = \infty
limx0(x2)=0\lim_{x \to 0^-}\left(\frac{x}{2}\right) = 0
More at x→0 from the left
limx0+(x2)=0\lim_{x \to 0^+}\left(\frac{x}{2}\right) = 0
More at x→0 from the right
limx1(x2)=12\lim_{x \to 1^-}\left(\frac{x}{2}\right) = \frac{1}{2}
More at x→1 from the left
limx1+(x2)=12\lim_{x \to 1^+}\left(\frac{x}{2}\right) = \frac{1}{2}
More at x→1 from the right
limx(x2)=\lim_{x \to -\infty}\left(\frac{x}{2}\right) = -\infty
More at x→-oo
The graph
Limit of the function x/2