Mister Exam

Other calculators:


sin(5*x)/(2*x^2)

Limit of the function sin(5*x)/(2*x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /sin(5*x)\
 lim |--------|
x->0+|     2  |
     \  2*x   /
limx0+(sin(5x)2x2)\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right)
Limit(sin(5*x)/((2*x^2)), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+sin(5x)=0\lim_{x \to 0^+} \sin{\left(5 x \right)} = 0
and limit for the denominator is
limx0+(2x2)=0\lim_{x \to 0^+}\left(2 x^{2}\right) = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(sin(5x)2x2)\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right)
=
Let's transform the function under the limit a few
limx0+(sin(5x)2x2)\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right)
=
limx0+(ddxsin(5x)ddx2x2)\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \sin{\left(5 x \right)}}{\frac{d}{d x} 2 x^{2}}\right)
=
limx0+(5cos(5x)4x)\lim_{x \to 0^+}\left(\frac{5 \cos{\left(5 x \right)}}{4 x}\right)
=
limx0+(54x)\lim_{x \to 0^+}\left(\frac{5}{4 x}\right)
=
limx0+(54x)\lim_{x \to 0^+}\left(\frac{5}{4 x}\right)
=
\infty
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-500500
Rapid solution [src]
oo
\infty
One‐sided limits [src]
     /sin(5*x)\
 lim |--------|
x->0+|     2  |
     \  2*x   /
limx0+(sin(5x)2x2)\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right)
oo
\infty
= 377.431019234322
     /sin(5*x)\
 lim |--------|
x->0-|     2  |
     \  2*x   /
limx0(sin(5x)2x2)\lim_{x \to 0^-}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right)
-oo
-\infty
= -377.431019234322
= -377.431019234322
Other limits x→0, -oo, +oo, 1
limx0(sin(5x)2x2)=\lim_{x \to 0^-}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right) = \infty
More at x→0 from the left
limx0+(sin(5x)2x2)=\lim_{x \to 0^+}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right) = \infty
limx(sin(5x)2x2)=0\lim_{x \to \infty}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right) = 0
More at x→oo
limx1(sin(5x)2x2)=sin(5)2\lim_{x \to 1^-}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right) = \frac{\sin{\left(5 \right)}}{2}
More at x→1 from the left
limx1+(sin(5x)2x2)=sin(5)2\lim_{x \to 1^+}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right) = \frac{\sin{\left(5 \right)}}{2}
More at x→1 from the right
limx(sin(5x)2x2)=0\lim_{x \to -\infty}\left(\frac{\sin{\left(5 x \right)}}{2 x^{2}}\right) = 0
More at x→-oo
Numerical answer [src]
377.431019234322
377.431019234322
The graph
Limit of the function sin(5*x)/(2*x^2)