Mister Exam

Other calculators:


tan(3*x)/(2*sin(5*x))

Limit of the function tan(3*x)/(2*sin(5*x))

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     / tan(3*x) \
 lim |----------|
x->0+\2*sin(5*x)/
limx0+(tan(3x)2sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
Limit(tan(3*x)/((2*sin(5*x))), x, 0)
Lopital's rule
We have indeterminateness of type
0/0,

i.e. limit for the numerator is
limx0+(tan(3x)2)=0\lim_{x \to 0^+}\left(\frac{\tan{\left(3 x \right)}}{2}\right) = 0
and limit for the denominator is
limx0+sin(5x)=0\lim_{x \to 0^+} \sin{\left(5 x \right)} = 0
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
limx0+(tan(3x)2sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
=
Let's transform the function under the limit a few
limx0+(tan(3x)2sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
=
limx0+(ddxtan(3x)2ddxsin(5x))\lim_{x \to 0^+}\left(\frac{\frac{d}{d x} \frac{\tan{\left(3 x \right)}}{2}}{\frac{d}{d x} \sin{\left(5 x \right)}}\right)
=
limx0+(3tan2(3x)2+325cos(5x))\lim_{x \to 0^+}\left(\frac{\frac{3 \tan^{2}{\left(3 x \right)}}{2} + \frac{3}{2}}{5 \cos{\left(5 x \right)}}\right)
=
limx0+(3tan2(3x)10+310)\lim_{x \to 0^+}\left(\frac{3 \tan^{2}{\left(3 x \right)}}{10} + \frac{3}{10}\right)
=
limx0+(3tan2(3x)10+310)\lim_{x \to 0^+}\left(\frac{3 \tan^{2}{\left(3 x \right)}}{10} + \frac{3}{10}\right)
=
310\frac{3}{10}
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
02468-8-6-4-2-1010-200200
Other limits x→0, -oo, +oo, 1
limx0(tan(3x)2sin(5x))=310\lim_{x \to 0^-}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right) = \frac{3}{10}
More at x→0 from the left
limx0+(tan(3x)2sin(5x))=310\lim_{x \to 0^+}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right) = \frac{3}{10}
limx(tan(3x)2sin(5x))\lim_{x \to \infty}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
More at x→oo
limx1(tan(3x)2sin(5x))=tan(3)2sin(5)\lim_{x \to 1^-}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right) = \frac{\tan{\left(3 \right)}}{2 \sin{\left(5 \right)}}
More at x→1 from the left
limx1+(tan(3x)2sin(5x))=tan(3)2sin(5)\lim_{x \to 1^+}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right) = \frac{\tan{\left(3 \right)}}{2 \sin{\left(5 \right)}}
More at x→1 from the right
limx(tan(3x)2sin(5x))\lim_{x \to -\infty}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
More at x→-oo
One‐sided limits [src]
     / tan(3*x) \
 lim |----------|
x->0+\2*sin(5*x)/
limx0+(tan(3x)2sin(5x))\lim_{x \to 0^+}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
3/10
310\frac{3}{10}
= 0.3
     / tan(3*x) \
 lim |----------|
x->0-\2*sin(5*x)/
limx0(tan(3x)2sin(5x))\lim_{x \to 0^-}\left(\frac{\tan{\left(3 x \right)}}{2 \sin{\left(5 x \right)}}\right)
3/10
310\frac{3}{10}
= 0.3
= 0.3
Rapid solution [src]
3/10
310\frac{3}{10}
Numerical answer [src]
0.3
0.3
The graph
Limit of the function tan(3*x)/(2*sin(5*x))