Mister Exam

Other calculators:


x/sqrt(1-x^2)

Limit of the function x/sqrt(1-x^2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     x     \
 lim |-----------|
x->oo|   ________|
     |  /      2 |
     \\/  1 - x  /
$$\lim_{x \to \infty}\left(\frac{x}{\sqrt{1 - x^{2}}}\right)$$
Limit(x/sqrt(1 - x^2), x, oo, dir='-')
Lopital's rule
We have indeterminateness of type
oo/oo*i,

i.e. limit for the numerator is
$$\lim_{x \to \infty} x = \infty$$
and limit for the denominator is
$$\lim_{x \to \infty} \sqrt{1 - x^{2}} = \infty i$$
Let's take derivatives of the numerator and denominator until we eliminate indeterninateness.
$$\lim_{x \to \infty}\left(\frac{x}{\sqrt{1 - x^{2}}}\right)$$
=
$$\lim_{x \to \infty}\left(\frac{\frac{d}{d x} x}{\frac{d}{d x} \sqrt{1 - x^{2}}}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{\sqrt{1 - x^{2}}}{x}\right)$$
=
$$\lim_{x \to \infty}\left(- \frac{\sqrt{1 - x^{2}}}{x}\right)$$
=
$$- i$$
It can be seen that we have applied Lopital's rule (we have taken derivatives with respect to the numerator and denominator) 1 time(s)
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to \infty}\left(\frac{x}{\sqrt{1 - x^{2}}}\right) = - i$$
$$\lim_{x \to 0^-}\left(\frac{x}{\sqrt{1 - x^{2}}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{\sqrt{1 - x^{2}}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{\sqrt{1 - x^{2}}}\right) = \infty$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{\sqrt{1 - x^{2}}}\right) = - \infty i$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{x}{\sqrt{1 - x^{2}}}\right) = i$$
More at x→-oo
Rapid solution [src]
-I
$$- i$$
The graph
Limit of the function x/sqrt(1-x^2)