Mister Exam

Other calculators:


(1+x^2-4*x)/(1+2*x)

Limit of the function (1+x^2-4*x)/(1+2*x)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /     2      \
     |1 + x  - 4*x|
 lim |------------|
x->2+\  1 + 2*x   /
$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right)$$
Limit((1 + x^2 - 4*x)/(1 + 2*x), x, 2)
Detail solution
Let's take the limit
$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right)$$
transform
$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{x^{2} - 4 x + 1}{2 x + 1}\right)$$
=
$$\lim_{x \to 2^+}\left(\frac{x^{2} - 4 x + 1}{2 x + 1}\right) = $$
$$\frac{- 8 + 1 + 2^{2}}{1 + 2 \cdot 2} = $$
= -3/5

The final answer:
$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{3}{5}$$
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to 2^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{3}{5}$$
More at x→2 from the left
$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{3}{5}$$
$$\lim_{x \to \infty}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = \infty$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = 1$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = 1$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{2}{3}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{2}{3}$$
More at x→1 from the right
$$\lim_{x \to -\infty}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = -\infty$$
More at x→-oo
One‐sided limits [src]
     /     2      \
     |1 + x  - 4*x|
 lim |------------|
x->2+\  1 + 2*x   /
$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right)$$
-3/5
$$- \frac{3}{5}$$
= -0.6
     /     2      \
     |1 + x  - 4*x|
 lim |------------|
x->2-\  1 + 2*x   /
$$\lim_{x \to 2^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right)$$
-3/5
$$- \frac{3}{5}$$
= -0.6
= -0.6
Rapid solution [src]
-3/5
$$- \frac{3}{5}$$
Numerical answer [src]
-0.6
-0.6
The graph
Limit of the function (1+x^2-4*x)/(1+2*x)