$$\lim_{x \to 2^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{3}{5}$$
More at x→2 from the left$$\lim_{x \to 2^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{3}{5}$$
$$\lim_{x \to \infty}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = \infty$$
More at x→oo$$\lim_{x \to 0^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = 1$$
More at x→0 from the left$$\lim_{x \to 0^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = 1$$
More at x→0 from the right$$\lim_{x \to 1^-}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{2}{3}$$
More at x→1 from the left$$\lim_{x \to 1^+}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = - \frac{2}{3}$$
More at x→1 from the right$$\lim_{x \to -\infty}\left(\frac{- 4 x + \left(x^{2} + 1\right)}{2 x + 1}\right) = -\infty$$
More at x→-oo