Mister Exam

Other calculators:


(-2+x)^(-2)

Limit of the function (-2+x)^(-2)

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
         1    
 lim ---------
x->2+        2
     (-2 + x) 
limx2+1(x2)2\lim_{x \to 2^+} \frac{1}{\left(x - 2\right)^{2}}
Limit((-2 + x)^(-2), x, 2)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
-4.0-3.0-2.0-1.04.00.01.02.03.0025000
One‐sided limits [src]
         1    
 lim ---------
x->2+        2
     (-2 + x) 
limx2+1(x2)2\lim_{x \to 2^+} \frac{1}{\left(x - 2\right)^{2}}
oo
\infty
= 22801.0
         1    
 lim ---------
x->2-        2
     (-2 + x) 
limx21(x2)2\lim_{x \to 2^-} \frac{1}{\left(x - 2\right)^{2}}
oo
\infty
= 22801.0
= 22801.0
Rapid solution [src]
oo
\infty
Other limits x→0, -oo, +oo, 1
limx21(x2)2=\lim_{x \to 2^-} \frac{1}{\left(x - 2\right)^{2}} = \infty
More at x→2 from the left
limx2+1(x2)2=\lim_{x \to 2^+} \frac{1}{\left(x - 2\right)^{2}} = \infty
limx1(x2)2=0\lim_{x \to \infty} \frac{1}{\left(x - 2\right)^{2}} = 0
More at x→oo
limx01(x2)2=14\lim_{x \to 0^-} \frac{1}{\left(x - 2\right)^{2}} = \frac{1}{4}
More at x→0 from the left
limx0+1(x2)2=14\lim_{x \to 0^+} \frac{1}{\left(x - 2\right)^{2}} = \frac{1}{4}
More at x→0 from the right
limx11(x2)2=1\lim_{x \to 1^-} \frac{1}{\left(x - 2\right)^{2}} = 1
More at x→1 from the left
limx1+1(x2)2=1\lim_{x \to 1^+} \frac{1}{\left(x - 2\right)^{2}} = 1
More at x→1 from the right
limx1(x2)2=0\lim_{x \to -\infty} \frac{1}{\left(x - 2\right)^{2}} = 0
More at x→-oo
Numerical answer [src]
22801.0
22801.0
The graph
Limit of the function (-2+x)^(-2)