Mister Exam

Other calculators


x/sqrt(1-x^2)

Derivative of x/sqrt(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x     
-----------
   ________
  /      2 
\/  1 - x  
$$\frac{x}{\sqrt{- x^{2} + 1}}$$
d /     x     \
--|-----------|
dx|   ________|
  |  /      2 |
  \\/  1 - x  /
$$\frac{d}{d x} \frac{x}{\sqrt{- x^{2} + 1}}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Apply the power rule: goes to

    To find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                    2    
     1             x     
----------- + -----------
   ________           3/2
  /      2    /     2\   
\/  1 - x     \1 - x /   
$$\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{- x^{2} + 1}}$$
The second derivative [src]
  /         2 \
  |      3*x  |
x*|3 - -------|
  |          2|
  \    -1 + x /
---------------
          3/2  
  /     2\     
  \1 - x /     
$$\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
   /                  /          2 \\
   |                2 |       5*x  ||
   |               x *|-3 + -------||
   |          2       |           2||
   |       3*x        \     -1 + x /|
-3*|-1 + ------- + -----------------|
   |           2              2     |
   \     -1 + x          1 - x      /
-------------------------------------
                     3/2             
             /     2\                
             \1 - x /                
$$- \frac{3 \cdot \left(\frac{x^{2} \cdot \left(\frac{5 x^{2}}{x^{2} - 1} - 3\right)}{- x^{2} + 1} + \frac{3 x^{2}}{x^{2} - 1} - 1\right)}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}$$
The graph
Derivative of x/sqrt(1-x^2)