Mister Exam

Other calculators


x/sqrt(1-x^2)

Derivative of x/sqrt(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     x     
-----------
   ________
  /      2 
\/  1 - x  
xx2+1\frac{x}{\sqrt{- x^{2} + 1}}
d /     x     \
--|-----------|
dx|   ________|
  |  /      2 |
  \\/  1 - x  /
ddxxx2+1\frac{d}{d x} \frac{x}{\sqrt{- x^{2} + 1}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=xf{\left(x \right)} = x and g(x)=1x2g{\left(x \right)} = \sqrt{1 - x^{2}}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Apply the power rule: xx goes to 11

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=1x2u = 1 - x^{2}.

    2. Apply the power rule: u\sqrt{u} goes to 12u\frac{1}{2 \sqrt{u}}

    3. Then, apply the chain rule. Multiply by ddx(1x2)\frac{d}{d x} \left(1 - x^{2}\right):

      1. Differentiate 1x21 - x^{2} term by term:

        1. The derivative of the constant 11 is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: x2x^{2} goes to 2x2 x

          So, the result is: 2x- 2 x

        The result is: 2x- 2 x

      The result of the chain rule is:

      x1x2- \frac{x}{\sqrt{1 - x^{2}}}

    Now plug in to the quotient rule:

    x21x2+1x21x2\frac{\frac{x^{2}}{\sqrt{1 - x^{2}}} + \sqrt{1 - x^{2}}}{1 - x^{2}}

  2. Now simplify:

    1(1x2)32\frac{1}{\left(1 - x^{2}\right)^{\frac{3}{2}}}


The answer is:

1(1x2)32\frac{1}{\left(1 - x^{2}\right)^{\frac{3}{2}}}

The graph
02468-8-6-4-2-1010-2020
The first derivative [src]
                    2    
     1             x     
----------- + -----------
   ________           3/2
  /      2    /     2\   
\/  1 - x     \1 - x /   
x2(x2+1)32+1x2+1\frac{x^{2}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + \frac{1}{\sqrt{- x^{2} + 1}}
The second derivative [src]
  /         2 \
  |      3*x  |
x*|3 - -------|
  |          2|
  \    -1 + x /
---------------
          3/2  
  /     2\     
  \1 - x /     
x(3x2x21+3)(x2+1)32\frac{x \left(- \frac{3 x^{2}}{x^{2} - 1} + 3\right)}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}
The third derivative [src]
   /                  /          2 \\
   |                2 |       5*x  ||
   |               x *|-3 + -------||
   |          2       |           2||
   |       3*x        \     -1 + x /|
-3*|-1 + ------- + -----------------|
   |           2              2     |
   \     -1 + x          1 - x      /
-------------------------------------
                     3/2             
             /     2\                
             \1 - x /                
3(x2(5x2x213)x2+1+3x2x211)(x2+1)32- \frac{3 \cdot \left(\frac{x^{2} \cdot \left(\frac{5 x^{2}}{x^{2} - 1} - 3\right)}{- x^{2} + 1} + \frac{3 x^{2}}{x^{2} - 1} - 1\right)}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}
The graph
Derivative of x/sqrt(1-x^2)