Mister Exam

Other calculators:


x/cos(x)^2

Limit of the function x/cos(x)^2

at
v

For end points:

The graph:

from to

Piecewise:

The solution

You have entered [src]
      /   x   \
 lim  |-------|
x->-oo|   2   |
      \cos (x)/
$$\lim_{x \to -\infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)$$
Limit(x/cos(x)^2, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
Rapid solution [src]
      /   x   \
 lim  |-------|
x->-oo|   2   |
      \cos (x)/
$$\lim_{x \to -\infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)$$
Other limits x→0, -oo, +oo, 1
$$\lim_{x \to -\infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)$$
$$\lim_{x \to \infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)$$
More at x→oo
$$\lim_{x \to 0^-}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = 0$$
More at x→0 from the left
$$\lim_{x \to 0^+}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = 0$$
More at x→0 from the right
$$\lim_{x \to 1^-}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = \frac{1}{\cos^{2}{\left(1 \right)}}$$
More at x→1 from the left
$$\lim_{x \to 1^+}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = \frac{1}{\cos^{2}{\left(1 \right)}}$$
More at x→1 from the right
The graph
Limit of the function x/cos(x)^2