Mister Exam
Lang:
EN
EN
ES
RU
Other calculators:
Integral Step by Step
Derivative Step by Step
Differential equations Step by Step
How to use it?
Limit of the function
:
Limit of (1+x^2-4*x)/(1+2*x)
Limit of x*2^x*3^(-x)
Limit of (4+x^2)/(-6+2*x)
Limit of (-x+tan(x))/(x+2*sin(x))
Graphing y =
:
x/cos(x)^2
Integral of d{x}
:
x/cos(x)^2
Identical expressions
x/cos(x)^ two
x divide by co sinus of e of (x) squared
x divide by co sinus of e of (x) to the power of two
x/cos(x)2
x/cosx2
x/cos(x)²
x/cos(x) to the power of 2
x/cosx^2
x divide by cos(x)^2
Similar expressions
x*cot(3*x)/cos(x)^2
x/cosx^2
Limit of the function
/
x/cos(x)^2
Limit of the function x/cos(x)^2
at
→
Calculate the limit!
v
For end points:
---------
From the left (x0-)
From the right (x0+)
The graph:
from
to
Piecewise:
{
enter the piecewise function here
The solution
You have entered
[src]
/ x \ lim |-------| x->-oo| 2 | \cos (x)/
lim
x
→
−
∞
(
x
cos
2
(
x
)
)
\lim_{x \to -\infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)
x
→
−
∞
lim
(
cos
2
(
x
)
x
)
Limit(x/cos(x)^2, x, -oo)
Lopital's rule
There is no sense to apply Lopital's rule to this function since there is no indeterminateness of 0/0 or oo/oo type
The graph
0
2
4
6
8
-8
-6
-4
-2
-10
10
-10000
10000
Plot the graph
Rapid solution
[src]
/ x \ lim |-------| x->-oo| 2 | \cos (x)/
lim
x
→
−
∞
(
x
cos
2
(
x
)
)
\lim_{x \to -\infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)
x
→
−
∞
lim
(
cos
2
(
x
)
x
)
Expand and simplify
Other limits x→0, -oo, +oo, 1
lim
x
→
−
∞
(
x
cos
2
(
x
)
)
\lim_{x \to -\infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)
x
→
−
∞
lim
(
cos
2
(
x
)
x
)
lim
x
→
∞
(
x
cos
2
(
x
)
)
\lim_{x \to \infty}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right)
x
→
∞
lim
(
cos
2
(
x
)
x
)
More at x→oo
lim
x
→
0
−
(
x
cos
2
(
x
)
)
=
0
\lim_{x \to 0^-}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = 0
x
→
0
−
lim
(
cos
2
(
x
)
x
)
=
0
More at x→0 from the left
lim
x
→
0
+
(
x
cos
2
(
x
)
)
=
0
\lim_{x \to 0^+}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = 0
x
→
0
+
lim
(
cos
2
(
x
)
x
)
=
0
More at x→0 from the right
lim
x
→
1
−
(
x
cos
2
(
x
)
)
=
1
cos
2
(
1
)
\lim_{x \to 1^-}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = \frac{1}{\cos^{2}{\left(1 \right)}}
x
→
1
−
lim
(
cos
2
(
x
)
x
)
=
cos
2
(
1
)
1
More at x→1 from the left
lim
x
→
1
+
(
x
cos
2
(
x
)
)
=
1
cos
2
(
1
)
\lim_{x \to 1^+}\left(\frac{x}{\cos^{2}{\left(x \right)}}\right) = \frac{1}{\cos^{2}{\left(1 \right)}}
x
→
1
+
lim
(
cos
2
(
x
)
x
)
=
cos
2
(
1
)
1
More at x→1 from the right
The graph